Multi-Objective Optimization of Injection Molding Using Taguchi, Fuzzy Methods, and GA
Downloads
The objective of this research is to optimize the injection molding process of an automotive window regulator bracket by improving the moldability index while minimizing key defects. To achieve this, a multi-objective framework is developed that combines the Taguchi method with Fuzzy Analytic Hierarchy Process (FAHP) and Fuzzy-TOPSIS. Five critical processing parameters—melt temperature, mold temperature, filling time, holding pressure time, and cooling time—were investigated, with polypropylene as the base material. A Taguchi L25 orthogonal array was employed to reduce the number of experimental trials from 3,125 to just 25, thereby saving resources while maintaining reliability. The evaluation considered warpage, residual stress, and shear stress, which are the most influential defects affecting part performance. Finite Element Analysis (FEA) was incorporated to validate the accuracy of the results, while a hybrid ANFIS-GA predictive model was applied to forecast the moldability index, demonstrating an improvement of about 1% over conventional optimization methods. The optimized settings resulted in minimized warpage (1.8122 mm), residual stress (43.03 MPa), and shear stress (0.08 MPa). The novelty of this work lies in integrating Taguchi with FAHP and Fuzzy-TOPSIS for a single-objective transformation, offering a systematic and efficient approach for multi-objective optimization in injection molding applications.
Downloads
[1] Min, B. H. (2003). A study on quality monitoring of injection-molded parts. Journal of Materials Processing Technology, 136(1–3), 1–6. doi:10.1016/S0924-0136(02)00445-4.
[2] Moussaoui, H. (2024). Achieving energy savings and process optimization in plastic injection molding: A design of experiments study. Journal of Cleaner Production, 477, 143835. doi:10.1016/j.jclepro.2024.143835.
[3] Kurkin, E., Pioquinto, J. G. Q., Kurkina, E., Pechenik, E., & Chertykovtseva, V. (2024). Heuristic algorithm for the topological optimization of runner system for the thermoplastics injection molding. Journal of Manufacturing Processes, 124, 1393–1409. doi:10.1016/j.jmapro.2024.06.064.
[4] Moayyedian, M., Abhary, K., & Marian, R. (2015). Improved Gate System for Scrap Reduction in Injection Molding Processes. Procedia Manufacturing, 2, 246–250. doi:10.1016/j.promfg.2015.07.043.
[5] Tang, S. H., Kong, Y. M., Sapuan, S. M., Samin, R., & Sulaiman, S. (2006). Design and thermal analysis of plastic injection mould. Journal of Materials Processing Technology, 171(2), 259–267. doi:10.1016/j.jmatprotec.2005.06.075.
[6] Crawford, R. J. (1987). Rubber and plastic engineering design and application. Mechanical Engineering Publications, London, United Kingdom.
[7] Zhao, N., Lian, J., Wang, P., & Xu, Z. (2022). Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review. The International Journal of Advanced Manufacturing Technology, 120(1–2), 85–101. doi:10.1007/s00170-022-08859-0.
[8] Lin, M.-Y., Zeng, Y.-J., Hwang, S.-J., Wang, M.-H., Liu, H.-P., & Fang, C.-L. (2022). Warpage and residual stress analyses of post-mold cure process of IC packages. The International Journal of Advanced Manufacturing Technology, 124(3–4), 1017–1039. doi:10.1007/s00170-022-10436-4.
[9] Mukhtarkhanov, M., Shehab, E., & Ali, M. H. (2024). Experimental Study on Warpage Phenomenon of Wax Parts Manufactured by Fused Filament Fabrication. Polymers, 16(2), 208. doi:10.3390/polym16020208.
[10] Wang, J., Liu, T., Zheng, K., Liu, H., Cui, H., & Li, H. (2024). Local thermal warpage deformation of polypropylene injection molded flat part and neural network prediction model. Frontiers in Materials, 11. doi:10.3389/fmats.2024.1421546.
[11] Wang, J., He, J., Li, H., & Fang, K. (2023). Qualitative characterization of residual stress of injection molded polycarbonate goggles based on photoelasticity and digital image processing technique. Frontiers in Materials, 10, 1242721. doi:10.3389/fmats.2023.1242721.
[12] Hiyane-Nashiro, G., Hernández-Hernández, M., Rojas-García, J., Rodriguez-Resendiz, J., & Álvarez-Alvarado, J. M. (2022). Optimization of the Reduction of Shrinkage and Warpage for Plastic Parts in the Injection Molding Process by Extended Adaptive Weighted Summation Method. Polymers, 14(23), 5133. doi:10.3390/polym14235133.
[13] Siabia, A., Sohrabkhani, M., Mahdiani, L. R., & Taghavitabari, A. (2022). The use of Taguchi method in investigation of influence injection molding parameters on the warpage of an industrial component. NeuroQuantology, 20(22), 1845. doi:10.14704/nq.2022.20.22.NQ19638.
[14] Liu, X., Fan, X., Guo, Y., Man, B., & Li, L. (2021). Warpage optimization of the GFRP injection molding process parameters. Microsystem Technologies, 27(12), 4337–4346. doi:10.1007/s00542-021-05241-0.
[15] Sudsawat, S., & Sriseubsai, W. (2018). Warpage reduction through optimized process parameters and annealed process of injection-molded plastic parts. Journal of Mechanical Science and Technology, 32(10), 4787-4799. doi:10.1007/s12206-018-0926-x.
[16] Mohamad Halimin, N. A., Zain, A. M., & Azman, M. F. (2015). Warpage Prediction in Injection Molding Using Artificial Neural Network. Journal of Soft Computing & Decision Support Systems, 2(5), 1-7.
[17] Jacques, M. St. (1982). An analysis of thermal warpage in injection molded flat parts due to unbalanced cooling. Polymer Engineering & Science, 22(4), 241–247. doi:10.1002/pen.760220405.
[18] Leo, V., & Cuvelliez, Ch. (1996). The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part. Polymer Engineering & Science, 36(15), 1961–1971. doi:10.1002/pen.10592.
[19] Tarng, Y. S., & Yang, W. H. (1998). Application of the Taguchi Method to the Optimization of the Submerged Arc Welding Process. Materials and Manufacturing Processes, 13(3), 455–467. doi:10.1080/10426919808935262.
[20] Connor, A. M. (1999). Parameter Sizing for Fluid Power Circuits Using Taguchi Methods. Journal of Engineering Design, 10(4), 377–390. doi:10.1080/095448299261263.
[21] Moayyedian, M., Qazani, M. R. C., & Pourmostaghimi, V. (2022). Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver. The International Journal of Advanced Manufacturing Technology, 124(1–2), 297–313. doi:10.1007/s00170-022-10551-2.
[22] Kanagalakshmi, S., Manamalli, D., & Rafiq, M. M. (2013). Real time Implementation of multimodel based PID and Fuzzy controller for Injection molding machine. IFAC Proceedings Volumes, 46(32), 493–498. doi:10.3182/20131218-3-in-2045.00037.
[23] Moayyedian, M., Abhary, K., & Marian, R. (2018). Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design. CIRP Journal of Manufacturing Science and Technology, 21, 150–160. doi:10.1016/j.cirpj.2017.12.001.
[24] Otieno, S. O., Wambua, J. M., Mwema, F. M., Mharakurwa, E. T., Jen, T. C., & Akinlabi, E. T. (2025). A predictive modelling strategy for warpage and shrinkage defects in plastic injection molding using fuzzy logic and pattern search optimization. Journal of Intelligent Manufacturing, 36(3), 1835–1859. doi:10.1007/s10845-024-02331-4.
[25] Zhang, L., Chang, T. L., Tsao, C. C., Hsieh, K. C., & Hsu, C. Y. (2025). Analysis and optimization of injection molding process on warpage based on Taguchi design and PSO algorithm. The International Journal of Advanced Manufacturing Technology, 137(1), 981-988. doi:10.1007/s00170-025-15099-5.
[26] Chen, J. Y., Vo, T. P. L., & Huang, M. S. (2025). Real-time monitoring and quantitative analysis of residual stress in thin-walled injection-molded components. Journal of Manufacturing Processes, 141, 991-1001. doi:10.1016/j.jmapro.2025.03.030.
[27] Tan, F. (2025). Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors. Polymers, 17(18), 2465. doi:10.3390/polym17182465.
[28] Guerra, N. B., Reis, T. M., Scopel, T., de Lima, M. S., Figueroa, C. A., & Michels, A. F. (2023). Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry. The International Journal of Advanced Manufacturing Technology, 128(1–2), 479–490. doi:10.1007/s00170-023-11782-7.
[29] He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: a fuzzy-neuro approach. Journal of Intelligent Manufacturing, 9(1), 17–27. doi:10.1023/a:1008843207417.
[30] Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228. doi:10.1016/j.jmatprotec.2007.12.114.
[31] Moayyedian, M., Qazani, M. R. C., Amirkhizi, P. J., Asadi, H., & Hedayati-Dezfooli, M. (2024). Multiple objectives optimization of injection-moulding process for dashboard using soft computing and particle swarm optimization. Scientific Reports, 14(1), 23767. doi:10.1038/s41598-024-62618-7.
[32] Qazani, M. R. C., Moayyedian, M., Amirkhizi, P. J., Hedayati-Dezfooli, M., Abdalmonem, A., Alsmadi, A., & Alam, F. (2024). Multi-Objective Optimisation of Injection Moulding Process for Dashboard Using Genetic Algorithm and Type-2 Fuzzy Neural Network. Processes, 12(6), 1163. doi:10.3390/pr12061163.
[33] Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2013). Improving Injection Moulding Processes Using Experimental Design. World Academy of Science, Engineeering and Technology, 75(3), 157–170.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















