LH-Moments Parameter Estimation of Weibull Distribution
Downloads
Natural disasters such as sudden floods, storms, severe snowfall, and droughts are major problems in the world. Generally the distributions of extreme values are heavy-tailed distributions, and an important heavy-tailed distribution is the Weibull distribution, especially for non-linear behaviors. Therefore, accurately estimation of the occurrence of disasters is required to deal with such situations in a timely and efficient manner. Several methods can be used to estimate the parameters, for example, moments estimate, maximum likelihood estimate, linear of moment, and high-order L-moments. The objectives of this article are to estimate the parameters of the four-parameter Weibull distribution with weak non-linear effects (W4DN) based on the LH-moments method, and to propose a new parameter estimation formula. The proposed formula is classified into two cases based on the coefficient of the second-order term (δ): Case 1, where the coefficient is positive (δ > 0) and Case 2, where the coefficient is negative (δ < 0). In both cases, the corresponding estimation formulas are derived βr and λrp for p=1, 2, ... and r=1, 2, ..., respectively. The parameter estimations (γ ̂,α ̂,δ ̂,ϕ ̂ and κ ̂) are then optimized using the augmented Lagrangian adaptive barrier minimization algorithm. These formulas provide a practical approach for parameter estimation that is essential for forecasting extreme events in various disciplines, including hydrology, meteorology, insurance, finance, and engineering.
Downloads
[1] Weibull, W. (1939). A statistical theory of strength of materials. Proceedings No. 141; Royal Swedish Institute for Engineering Research, Stockholm, Sweden.
[2] Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18(3), 293–297. doi:10.1115/1.4010337.
[3] Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability, 42(2), 299–302. doi:10.1109/24.229504.
[4] Xie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87–93. doi:10.1016/0951-8320(95)00149-2.
[5] Xie, M., Tang, Y., & Goh, T. N. (2002). A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering and System Safety, 76(3), 279–285. doi:10.1016/S0951-8320(02)00022-4.
[6] Lai, C. D., Xie, M., & Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1), 33–37. doi:10.1109/TR.2002.805788.
[7] Bebbington, M., Lai, C. D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92(6), 719–726. doi:10.1016/j.ress.2006.03.004.
[8] Lai, C.D. (2014). Generalized Weibull Distributions. In: Generalized Weibull Distributions. Springer Briefs in Statistics, Springer, Berlin, Germany. doi:10.1007/978-3-642-39106-4_2.
[9] Almheidat, M., Lee, C., & Famoye, F. (2016). A generalization of the Weibull distribution with Applications. Journal of Modern Applied Statistical Methods, 15(2), 788–820. doi:10.22237/jmasm/1478004300.
[10] Kamal, R. M., & Ismail, M. A. (2019). On the mixture of flexible Weibull extension and Burr XII distributions. International Journal of Reliability and Safety, 13(4), 310–334. doi:10.1504/IJRS.2019.102889.
[11] Izadparast, A. H., & Niedzwecki, J. M. (2013). Four-parameter Weibull probability distribution model for weakly non-linear random variables. Probabilistic Engineering Mechanics, 32, 31–38. doi:10.1016/j.probengmech.2012.12.007.
[12] Bowman, K. O., & Shenton, L. R. (1998). Encyclopedia of statistical sciences. John Wiley & Sons, New York, United States.
[13] Aldrich, J. (1997). R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical science, 12(3), 162-176. doi:10.1214/ss/1030037906.
[14] Phoophiwfa, T., Laosuwan, T., Volodin, A., Papukdee, N., Suraphee, S., & Busababodhin, P. (2023). Adaptive Parameter Estimation of the Generalized Extreme Value Distribution Using Artificial Neural Network Approach. Atmosphere, 14(8), 1197. doi:10.3390/atmos14081197.
[15] Hosking, J. R. M. (1990). L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society Series B: Statistical Methodology, 52(1), 105–124. doi:10.1111/j.2517-6161.1990.tb01775.x.
[16] Busababodhin, P., Shin, Y., & Park, J.-S. (2024). Hybrid estimation using l-moments for the r-largest extreme value model with hydrological applications. Research Square (Preprint), 1-18. doi:10.21203/rs.3.rs-5329346/v1.
[17] Prahadchai, T., Busababodhin, P., & Park, J. S. (2024). Regional flood frequency analysis of extreme rainfall in Thailand, based on L-moments. Communications for Statistical Applications and Methods, 31(1), 37–53. doi:10.29220/CSAM.2024.31.1.037.
[18] Shin, Y., Shin, Y., & Park, J. S. (2025). Building nonstationary extreme value model using L-moments. Journal of the Korean Statistical Society, 1-24. doi:10.1007/s42952-025-00325-3.
[19] Khan, M. S. U. R., Hussain, Z., & Ahmad, I. (2021). Effects of L-moments, maximum likelihood and maximum product of spacing estimation methods in using pearson type-3 distribution for modeling extreme values. Water Resources Management, 35(5), 1415-1431. doi:10.1007/s11269-021-02767-w.
[20] Khan, M. S. U. R., Hussain, Z., Sher, S., Amjad, M., Baig, F., Ahmad, I., & Ullah, H. (2025). A comparative analysis of L-moments, maximum likelihood, and maximum product of spacing methods for the four-parameter kappa distribution in extreme value analysis. Scientific Reports, 15(1), 164. doi:10.1038/s41598-024-84056-1.
[21] Bakar, M. A. A., Ariff, N. M., & Nadzir, M. S. M. (2023). Comparative Analysis Between L-Moments and Maximum Product Spacing Method for Extreme PM10 Concentration. Proceedings of the International Conference on Mathematical Sciences and Statistics 2022 (ICMSS 2022), 214–227. doi:10.2991/978-94-6463-014-5_21.
[22] Wang, Q. J. (1997). LH moments for statistical analysis of extreme events. Water Resources Research, 33(12), 2841–2848. doi:10.1029/97WR02134.
[23] Meshgi, A., & Khalili, D. (2009). Comprehensive evaluation of regional flood frequency analysis by L- and LH-moments. II. Development of LH-moments parameters for the generalized Pareto and generalized logistic distributions. Stochastic Environmental Research and Risk Assessment, 23(1), 137–152. doi:10.1007/s00477-007-0202-6.
[24] Murshed, M. S., Seo, Y. A., & Park, J. S. (2014). LH-moment estimation of a four parameter kappa distribution with hydrologic applications. Stochastic Environmental Research and Risk Assessment, 28(2), 253–262. doi:10.1007/s00477-013-0746-6.
[25] Busababodhin, P., Seo, Y. A., Park, J. S., & Kumphon, B. on. (2016). LH-moment estimation of Wakeby distribution with hydrological applications. Stochastic Environmental Research and Risk Assessment, 30(6), 1757–1767. doi:10.1007/s00477-015-1168-4.
[26] Piyapatr, B., Monchaya, C., Tossapol, P., Park, J. S., Manoon, D. O., & Pannarat, G. (2021). LH-Moments of the Wakeby Distribution applied to Extreme Rainfall in Thailand. Malaysian Journal of Fundamental and Applied Sciences, 17(2), 166–180. doi:10.11113/mjfas.v17n2.2005.
[27] Anghel, C. G., & Ilinca, C. (2023). Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania. Water (Switzerland), 15(11), 2077. doi:10.3390/w15112077.
[28] Singh, A. K., & Chavan, S. R. (2025). LH-moment-based regional flood frequency analysis framework to determine design floods in Krishna River basin. Journal of Hydrology: Regional Studies, 58. doi:10.1016/j.ejrh.2025.102282.
[29] Dodson, B., & Nolan, D. (1999). Reliability engineering handbook. CRC Press, Boca Raton, United States.
[30] Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15(5), 1049–1054. doi:10.1029/WR015i005p01049.
[31] Varadhan, R. (2023). R-package ‘Alabama’ constrained nonlinear optimization. The R Foundation, Vienna, Austria. Available online: https://cran.r-project.org/web/packages/alabama/alabama.pdf (accessed on November 2025).
[32] Guayjarernpanishk, P., Bussababodhin, P., & Chiangpradit, M. (2023). The Partial L-Moment of the Four Kappa Distribution. Emerging Science Journal, 7(4), 1116–1125. doi:10.28991/ESJ-2023-07-04-06.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















