Design and Evaluation of C-Band Microstrip Antenna Array for Portable Ground Surveillance Radar
Downloads
This study aims to design, simulate, fabricate, and evaluate a high-gain C-band microstrip antenna array with a corrugation plate for Portable Ground Surveillance Radar (PGSR) applications, addressing the need for compact, high-performance antennas in border security operations. The proposed design targets a minimum gain of 20 dBi, a horizontal beamwidth of ≤ 2.8°, a vertical beamwidth of ≤7.5°, horizontal polarization, and compact physical dimensions for field portability. The methodology involved electromagnetic simulations to optimize the slit-patch array geometry, fabrication using Rogers RO-4350B substrate for its stable dielectric properties, and performance validation in an anechoic chamber using a vector network analyzer. The fabricated prototype achieved strong agreement with simulations in key metrics: realized gain exceeded 20 dBi, return loss reached -27.35 dB, and SWR was approximately 1.2, confirming effective impedance matching. The corrugation plate enhanced impedance matching, improved transmission efficiency (S21), and reduced reverse isolation (S12), while S22 remained stable. Despite these strengths, the measurement beamwidths, especially vertical beamwidth (~30°), exceeded both simulation and target values, highlighting fabrication precision and alignment as areas for improvement. The novelty of this work lies in integrating a corrugation plate to improve impedance matching and the correlation between simulation and measurement, offering a practical, tuneable enhancement to microstrip antenna arrays for PGSR and similar radar systems.
Downloads
[1] Davis, M. E. (2015). A history of battlefield surveillance radar. 2015 IEEE Radar Conference (RadarCon), 1345–1350. doi:10.1109/radar.2015.7131204.
[2] Heinbach, K., Painter, R., & Pace, P. (2014). Commercially available low probability of intercept radars and non-cooperative ELINT receiver capabilities. Naval Postgraduate School, Center for Joint Services Electronic Warfare, Monterey, United States.
[3] Park, J., Park, S., Kim, D. H., & Park, S. O. (2019). Leakage mitigation in heterodyne FMCW radar for small drone detection with stationary point concentration technique. IEEE Transactions on Microwave Theory and Techniques, 67(3), 1221–1232. doi:10.1109/TMTT.2018.2889045.
[4] GmbH. (2025). SQUIRE Ground Surveillance Radar. Thales Electronic Systems GmbH, Ditzingen, Germany.
[5] Sayed, A. N., Ramahi, O. M., & Shaker, G. (2024). Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools. Drones, 8(8), 370. doi:10.3390/drones8080370.
[6] Liu, B. (2024). PLL Designs for FMCW Radar Systems. PhD Thesis, University of California, Berkeley, United States.
[7] Apriono, C., Mahatmanto, B. P. A., & Juwono, F. H. (2023). Rectangular Microstrip Array Feed Antenna for C-Band Satellite Communications: Preliminary Results. Remote Sensing, 15(4), 1126. doi:10.3390/rs15041126.
[8] Ruliyanta, R., Nugroho, R., & Asyifa, D. (2024). Design of Rectangular Patch Array 2x4 Microstrip Antenna on C-Band for Weather Radar Applications. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 16(1), 7–11. doi:10.54554/jtec.2024.16.01.002.
[9] Nabi, R., Wei-Jun, L., & Majeed, M. R. (2024). Design of Microstrip Array Antenna for Vehicle Millimeter Wave Radar. European Journal of Electrical Engineering and Computer Science, 8(2), 77–90. doi:10.24018/ejece.2024.8.2.611.
[10] Phakaew, T., Pongthavornkamol, T., Torrungrueng, D., Dallmann, T., & Chalermwisutkul, S. (2025). A Wideband 4×4 Patch Array Antenna With Low Sidelobes for Radar-Based Obstacle Detection in Railway Transportation. IEEE Open Journal of Antennas and Propagation, 6(3), 774–788. doi:10.1109/OJAP.2025.3548112.
[11] Saeed, M. A., & Nwajana, A. O. (2023). A review of beamforming microstrip patch antenna array for future 5G/6G networks. Frontiers in Mechanical Engineering, 9. doi:10.3389/fmech.2023.1288171.
[12] Alshrafi, W. (2022). Grating lobe suppression in microstrip patch uniform linear array antennas using passive structures. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany.
[13] Puklibmoung, T., & Sa-Ngiamvibool, W. (2022). Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling. Applied System Innovation, 5(2), 31. doi:10.3390/asi5020031.
[14] Bhattacharjee, S., Mandal, S., Ghosh, C. K., & Banerjee, S. (2022). Reduction of Mutual Coupling and Cross-Polarization of Microstrip MIMO Antenna Using Electromagnetic Soft Surface (EMSS). Radio Science, 57(5), 1-10. doi:10.1029/2021RS007377.
[15] Shalannanda, W., & Hariyadi, T. (2019). Design and Simulation of C-Band Antenna for Portable Ground Surveillance Radar. Proceeding of 2019 5th International Conference on Wireless and Telematics, ICWT 2019, 1–4. doi:10.1109/ICWT47785.2019.8978234.
[16] Shalannanda, W., & Hariyadi, T. (2019). Design and Simulation of C-Band Antenna for Portable Ground Surveillance Radar. 2019 IEEE 5th International Conference on Wireless and Telematics (ICWT), 1–4. doi:10.1109/icwt47785.2019.8978234.
[17] Chen, Q., Yan, S., Guo, X., Wang, W., Huang, Z., Yang, L., Li, Y., & Liang, X. (2023). A low sidelobe 77 GHz centre-fed microstrip patch array antenna. IET Microwaves, Antennas and Propagation, 17(11), 887–896. doi:10.1049/mia2.12408.
[18] Swapna, S., Karthikeya, G. S., Koul, S. K., & Basu, A. (2024). A High Gain Multi-Port Series Fed Array Realized with Micromachined Low-Cost 3D-Printed Substrate. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 41(3), 287–296. doi:10.1080/02564602.2023.2242828.
[19] Ashfaq, M., Bashir, S., Hussain Shah, S. I., Abbasi, N. A., Rmili, H., & Khan, M. A. (2022). 5G Antenna Gain Enhancement Using a Novel Metasurface. Computers, Materials and Continua, 72(2), 3601–3611. doi:10.32604/cmc.2022.025558.
[20] Wang, H., Huang, X. B., & Fang, D. G. (2008). A single layer wideband U-slot microstrip patch antenna array. IEEE Antennas and Wireless Propagation Letters, 7, 9–12. doi:10.1109/LAWP.2007.914122.
[21] Huque, M. T. I. U., Hosain, M. K., Islam, M. S., & Chowdhury, M. A. A. (2011). Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications. International journal of advanced computer science and applications, 2(4), 81-87. doi:10.14569/ijacsa.2011.020413.
[22] Mandal, S., & Ghosh, C. K. (2022). Mutual Coupling Reduction in a Patch Antenna Array Based on Planar Frequency Selective Surface Structure. Radio Science, 57(2), 1-11. doi:10.1029/2021RS007392.
[23] Alsudani, A., & Marhoon, H. M. (2023). Design and Enhancement of Microstrip Patch Antenna Utilizing Mushroom Like-EBG for 5G Communications. Journal of Communications, 18(3), 156–163. doi:10.12720/jcm.18.3.156-163.
[24] Yalcinkaya, M. T., Kamal, S., Sen, P., & Fettweis, G. P. (2024). The Causal Nexus Between Different Feed Networks and Defected Ground Structures in Multi-Port MIMO Antennas. Sensors, 24(22), 7278. doi:10.3390/s24227278.
[25] Tunio, I. A., Mahe, Y., Razban-Haghighi, T., & Froppier, B. (2021). Mutual Coupling Reduction in Patch Antenna Array Using Combination of Shorting Pins and Metallic Walls. Progress In Electromagnetics Research C, 107, 157–171. doi:10.2528/pierc20082803.
[26] Zhu, J., & Liu, J. (2025). Design of Microstrip Antenna Integrating 24 GHz and 77 GHz Compact High-Gain Arrays. Sensors, 25(2), 481. doi:10.3390/s25020481.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















