Evaluating Digital Transformation Risks in Logistics and Supply Chain Management with PLS-SEM-ANN-fsQCA
Downloads
This study investigates the risks associated with digital transformation (DT) implementation in Vietnam’s logistics and supply chain management (SCM) sector, utilizing a hybrid PLS-SEM-ANN-fsQCA methodology to analyze data from 243 valid questionnaires. Anchored in the Technology-Organization-Environment framework augmented with human factors (TOE+H), the research aims to examine how technological, organizational, environmental, and human factors influence DT adoption and associated risks, including financial, operational, cybersecurity, and reputational risks, while exploring the moderating roles of firm size and digital literacy. Findings reveal that TOE+H factors significantly drive DT implementation, but misalignment, ineffective management, market volatility, and limited digital literacy amplify risks, particularly cybersecurity vulnerabilities. Moderation analyses indicate that high digital literacy, larger firm size, and regulatory compliance mitigate these risks. Artificial neural network (ANN) analysis highlights non-linear relationships, emphasizing technological and human factors as key drivers, while fuzzy-set qualitative comparative analysis (fsQCA) identifies configurations, such as strong technological-human factor alignment, linked to successful DT outcomes. Importance-Performance Map Analysis (IPMA) prioritizes technological and human factors for resource allocation to enhance sustainability. This study advances the TOE+H framework by integrating a hybrid methodology, offering novel insights into DT risk dynamics and practical strategies for sustainable logistics in Vietnam’s SCM sector.
Downloads
[1] Iden, J., & Bygstad, B. (2021). Managing Digital Transformation with Sociotechnical Micro-Foundations: A Dynamic Capabilities Approach. Proceedings of the 54th Hawaii International Conference on System Sciences. doi:10.24251/hicss.2021.778.
[2] Chanda, R. C., Vafaei-Zadeh, A., Hanifah, H., & Ramayah, T. (2024). Investigating factors influencing individual user’s intention to adopt cloud computing: a hybrid approach using PLS-SEM and fsQCA. Kybernetes, 53(11), 4470–4501. doi:10.1108/K-01-2023-0133.
[3] Zhang, C., & U-on, V. (2024). International Management Strategy of Small and Medium Enterprises in Thailand: Challenges and Strategic Adaptation in a Globalized Economy. International Journal of Business, 13(6), 194-201. doi:10.11648/j.ijber.20241306.16.
[4] Forte, R., & Medeiros, A. (2024). Agglomeration economies and firm’s export intensity: evidence from Portuguese manufacturing SMEs. Empirica, 51(3), 807–828. doi:10.1007/s10663-024-09616-0.
[5] Beleska-Spasova, E., Glaister, K. W., & Stride, C. (2012). Resource determinants of strategy and performance: The case of British exporters. Journal of World Business, 47(4), 635–647. doi:10.1016/j.jwb.2011.09.001.
[6] Jraisat, L., Gotsi, M., & Bourlakis, M. (2013). Drivers of information sharing and export performance in the Jordanian agri-food export supply chain: A qualitative study. International Marketing Review, 30(4), 323–356. doi:10.1108/IMR-03-2012-0056.
[7] Teng, X., Wu, Z., & Yang, F. (2022). Research on the Relationship between Digital Transformation and Performance of SMEs. Sustainability (Switzerland), 14(10). doi:10.3390/su14106012.
[8] Wu, S., Cheng, P., & Yang, F. (2024). Study on the impact of digital transformation on green competitive advantage: The role of green innovation and government regulation. PLoS ONE, 19(8 August), 0306603. doi:10.1371/journal.pone.0306603.
[9] Zaoui, F., & Souissi, N. (2022). Digital Maturity Assessment – A Case Study. Journal of Computer Science, 18(8), 724–731. doi:10.3844/jcssp.2022.724.731.
[10] Browder, R. E., Dwyer, S. M., & Koch, H. (2024). Upgrading adaptation: How digital transformation promotes organizational resilience. Strategic Entrepreneurship Journal, 18(1), 128–164. doi:10.1002/sej.1483.
[11] Gorjian Khanzad, Z., & Gooyabadi, A. A. (2022). Digital Strategizing: The Role of the Corporate Culture. Open Journal of Business and Management, 10(06), 2974–2995. doi:10.4236/ojbm.2022.106147.
[12] Leso, B. H., Cortimiglia, M. N., & Ghezzi, A. (2023). The contribution of organizational culture, structure, and leadership factors in the digital transformation of SMEs: a mixed-methods approach. Cognition, Technology and Work, 25(1), 151–179. doi:10.1007/s10111-022-00714-2.
[13] Leyh, C., Köppel, K., Neuschl, S., & Pentrack, M. (2021). Critical Success Factors for Digitalization Projects. Proceedings of the 16th Conference on Computer Science and Intelligence Systems, 25, 427–436. doi:10.15439/2021f122.
[14] Kim, J. W., Rhee, J. H., & Park, C. H. (2024). How Does Digital Transformation Improve Supply Chain Performance: A Manufacturer’s Perspective. Sustainability (Switzerland), 16(7), 3046. doi:10.3390/su16073046.
[15] Kidschun, F., Budde, F., & Gomes, A. S. (2023). Assessing the State of Corporate Digital Transformation: Results and Implications from a Global Survey. European Conference on Management Leadership and Governance, 19(1), 187–197. doi:10.34190/ecmlg.19.1.1959.
[16] Šimberová, I., Korauš, A., Schüller, D., Smolíkova, L., Straková, J., & Váchal, J. (2022). Threats and Opportunities in Digital Transformation in SMEs from the Perspective of Sustainability: A Case Study in the Czech Republic. Sustainability (Switzerland), 14(6). doi:10.3390/su14063628.
[17] Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250–275. doi:10.1108/17410391311325225.
[18] Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15–16), 4719–4742. doi:10.1080/00207543.2017.1402140.
[19] Suresh. S. S. (2024). Enhancing Supply Chain Resilience through Artificial Intelligence: A Strategic Framework for Executives. Emerging Science Journal, 8(4), 1462–1473. doi:10.28991/ESJ-2024-08-04-013.
[20] Chang, C.-L., & Octoyuda, E. (2024). Driving Digital Transformation: How Transformational Leadership Bridges Learning Agility and Digital Technology Adoption in MSMEs. Emerging Science Journal, 8(4), 1583-1601. doi:10.28991/esj-2024-08-04-020.
[21] Pham, T. V., & Tran, T. D. (2025). Unveiling the Decision-Making Process of Digital Transformation Adoption from a Behavioral-Cognitive Perspective: Mediating and Moderating Mechanisms. Emerging Science Journal, 9(1), 419–432. doi:10.28991/esj-2025-09-01-023.
[22] Li, P., Chen, Y., & Guo, X. (2025). Digital transformation and supply chain resilience. International Review of Economics & Finance, 99, 104033. doi:10.1016/j.iref.2025.104033.
[23] Cheah, J. H., Nitzl, C., Roldán, J. L., Cepeda-Carrion, G., & Gudergan, S. P. (2021). A Primer on the Conditional Mediation Analysis in PLS-SEM. Data Base for Advances in Information Systems, 52(SI), 43–100. doi:10.1145/3505639.3505645.
[24] Chopra, S., Meindl, P., & Virkar, A. (2023). Supply chain management: Strategy, planning, and operation (8th Ed.). Pearson, London, United Kingdom.
[25] Fatorachian, H., & Kazemi, H. (2020). Impact of Industry 4.0 on supply chain performance. Production Planning & Control, 32(1), 63–81. doi:10.1080/09537287.2020.1712487.
[26] Ghobakhloo, M., & Ching, N. T. (2019). Adoption of digital technologies of smart manufacturing in SMEs. Journal of Industrial Information Integration, 16, 100107. doi:10.1016/j.jii.2019.100107.
[27] Hasani, A., Haseli, G., & Deveci, M. (2024). Analyzing operational risks of digital supply chain transformation using hybrid ISM-MICMAC method. OPSEARCH, 62(2), 583–607. doi:10.1007/s12597-024-00792-y.
[28] Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi:10.1108/EBR-11-2018-0203.
[29] Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.
[30] Hsu, S., Gligor, D., Garg, V., Gölgeci, I., & Choi, R. J. (2025). Exploring supply chain capabilities as drivers for willingness to adopt blockchain technology using a technology–organization–environment (TOE) framework. Production Planning & Control, 36(16), 2382–2398. doi:10.1080/09537287.2025.2533186.
[31] Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846. doi:10.1080/00207543.2018.1488086.
[32] Jing, H., & Fan, Y. (2024). Digital Transformation, Supply Chain Integration and Supply Chain Performance: Evidence from Chinese Manufacturing Listed Firms. SAGE Open, 14(3). doi:10.1177/21582440241281616.
[33] Zhang, Y., Lin, Y., & Esfahbodi, A. (2025). Digital Transformations of Supply Chain Management via RFID Technology: A Systematic Literature Review. Journal of Digital Economy, 4, 251-267. doi:10.1016/j.jdec.2025.06.001
[34] Fan, Y., Chen, X., Guo, X., & Bai, K. (2025). How does digital transformation improve supply chain efficiency? Evidence from a-share listed companies in China. Finance Research Letters, 108549. doi:10.1016/j.frl.2025.108549.
[35] Li, F., Nucciarelli, A., Roden, S., & Graham, G. (2016). How smart cities transform operations models: A new research agenda for operations management in the digital economy. Production Planning & Control, 27(6), 514-528. doi:10.1080/09537287.2016.1147096.
[36] Liu, K. P., & Chiu, W. (2021). Supply Chain 4.0: the impact of supply chain digitalization and integration on firm performance. Asian Journal of Business Ethics, 10(2), 371–389. doi:10.1007/s13520-021-00137-8.
[37] Liu, J., Chen, M., & Liu, H. (2020). The role of big data analytics in enabling green supply chain management: a literature review. Journal of Data, Information and Management, 2(2), 75-83. doi:10.1007/s42488-019-00020-z.
[38] Memon, M. A., Jun, H. C., Ting, H., & Francis, C. W. (2018). Mediation analysis issues and recommendations. Journal of applied structural equation modeling, 2(1), 1-9.
[39] Vo Thai, H. C., Hong-Hue, T. H., & Tran, M. L. (2024). Dynamic capabilities and digitalization as antecedents of innovation and sustainable performance: empirical evidence from Vietnamese SMEs. Journal of Asia Business Studies, 18(2), 385-411. doi:10.1108/jabs-08-2023-0325.
[40] Nguyen, T. H. (2024). Investigating Driving Factors of Digital Transformation in the Vietnam Shipping Companies: Applied for TOE Framework. SAGE Open, 14(4). doi:10.1177/21582440241301210.
[41] Yu, J., Wang, J., & Moon, T. (2022). Influence of Digital Transformation Capability on Operational Performance. Sustainability (Switzerland), 14(13), 7909. doi:10.3390/su14137909.
[42] Ivanovic, N., de Vries, T., van der Vegt, G., & van Donk, D. P. (2025). Handling Disruption Concurrence: The Importance of Inter- and Intra-Departmental Communication for Critical Infrastructure Resilience. Journal of Supply Chain Management, 61(3), 55–76. doi:10.1111/jscm.12346.
[43] Nguyen, Q. M., Hang, N. P. T., & Dao, L. T. (2024). Exploring the Nexus between Digital Economy and Green Growth: Insights from Emerging Economies. Emerging Science Journal, 8(4), 1622–1641. doi:10.28991/esj-2024-08-04-022.
[44] Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510. doi:10.1016/j.im.2014.03.006.
[45] Rasoolimanesh, S. M., Ringle, C. M., Sarstedt, M., & Olya, H. (2021). The combined use of symmetric and asymmetric approaches: Partial least squares-structural equation modeling and fuzzy-set qualitative comparative analysis. International Journal of Contemporary Hospitality Management, 33(5), 1571-1592. doi:10.1108/IJCHM-10-2020-1164.
[46] Pham, T. A., Le-Anh, T., & Duong, M. C. (2025). A study of green logistics practice in Vietnam–the roles of intellectual capital and digital transformation. Asia Pacific Journal of Marketing and Logistics, 1-19. doi:10.1108/APJML-02-2025-0265.
[47] Bui, Q. T., & Le, S. T. (2025). Barriers to Blockchain Technology Implementation in Small and Medium-Sized Logistics Enterprises. SAGE Open, 15(3), 21582440251367622. doi:10.1177/21582440251367622.
[48] Brislin, R. W. (1980). Translation and content analysis of oral and written materials. Methodology, 389-444.
[49] Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial Least Squares Structural Equation Modeling. Handbook of Market Research. Springer, Cham, Switzerland. doi:10.1007/978-3-319-05542-8_15-2.
[50] Ragin, C. C. (2009). Redesigning social inquiry: Fuzzy sets and beyond. University of Chicago press, Chicago, United States. doi:.7208/chicago/9780226702797.001.0001.
[51] Jia, M., Stevenson, M., & Hendry, L. C. (2021). The boundary-spanning role of first-tier suppliers in sustainability-oriented supplier development initiatives. International Journal of Operations & Production Management, 41(11), 1633–1659. doi:10.1108/IJOPM-12-2020-0856.
[52] Gariya, N., Shaikh, A., Ahmad, A., Sharma, K., & Sharma, A. (2024). The Integration of Internet of Things into Supply Chain Management: Evolution, Impact, Benefits, and Challenges. Impact of Industry 4.0 on Supply Chain Sustainability, 97–114, Emerald Publishing Limited, Leeds, United Kingdom. doi:10.1108/978-1-83797-777-220241008.
[53] Queiroz, M. M., Pereira, S. C. F., Telles, R., & Machado, M. C. (2019). Industry 4.0 and digital supply chain capabilities. Benchmarking: An International Journal, 28(5), 1761–1782. doi:10.1108/bij-12-2018-0435.
[54] Kumar, N., Kumar, K., Aeron, A., & Verre, F. (2025). Blockchain technology in supply chain management: Innovations, applications, and challenges. Telematics and Informatics Reports, 18(4), 456–472. doi:10.1016/j.teler.2025.100204.
[55] Fosso Wamba, S., Queiroz, M. M., & Trinchera, L. (2020). Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. International Journal of Production Economics, 229, 107791. doi:10.1016/j.ijpe.2020.107791.
[56] Balderas, F., Fernández, E., Cruz-Reyes, L., Gómez-Santillán, C., & Rangel-Valdez, N. (2022). Solving group multi-objective optimization problems by optimizing consensus through multi-criteria ordinal classification. European Journal of Operational Research, 297(3), 1014–1029. doi:10.1016/j.ejor.2021.05.032.
[57] Yan, H., & Yang, X. (2025). Impact of firm’s supply chain network position on digital transformation: evidence from China. Chinese Management Studies, 19(4), 1348–1368. doi:10.1108/CMS-09-2023-0468.
[58] Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. doi:10.3758/BRM.40.3.879.
[59] Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197–206. doi:10.1086/651257.
[60] Vaezinejad, S., & Kouhizadeh, M. (2024). Blockchain and Supply Chain Management: Applications and Implications. The Palgrave Handbook of Supply Chain Management. Palgrave Macmillan, Cham, Switzerland. doi:10.1007/978-3-031-19884-7_75.
[61] Zhang, X., Liang, R., & Chen, Y. (2025). The impact of digital transformation of chain-leading enterprises on supply chain efficiency. Supply Chain Management: An International Journal, 30(3), 369-382. doi:10.1108/SCM-11-2024-0772.
[62] Smith, C., & Fatorachian, H. (2025). Strengthening supply chain risk management: Unveiling opportunities through the lens of behavioral economics and organizational culture. Procedia Computer Science, 253, 124-133. doi:10.1016/j.procs.2025.01.076.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















