Hybrid Neural Networks vs. Econometric Models for Fresh Durian Export Value Forecasting: A Comparative Analysis
Downloads
This study compares machine learning and econometric approaches for forecasting agricultural export values in volatile global markets, examining predictive accuracy and economic interpretability trade-offs. Monthly data from January 2014 to December 2023 were analyzed using five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Hybrid ANN-LSTM, Ordinary Least Squares (OLS), and Autoregressive Distributed Lag (ARDL). Key predictors included durian, mangosteen, and longan export values/volumes, plus China's GDP. Performance evaluation used MAE, RMSE, MAPE, and R² metrics with systematic hyperparameter optimization through grid search and 5-fold cross-validation. ANN achieved the highest absolute accuracy (MAE: 1,684,667,401.55; RMSE: 2,602,671,952.28), while Hybrid ANN-LSTM delivered superior relative accuracy (MAPE: 1.58%). ARDL demonstrated exceptional explanatory power (R²=0.83) for structural economic relationships. China's GDP emerged as the strongest determinant across all models. Longan export value showed contrasting effects between approaches, positive in machine learning models versus negative in econometric models, reflecting different paradigmatic interpretations of market substitution dynamics. This research introduces the first comprehensive comparative framework integrating advanced hybrid neural networks with traditional econometric methods for multi-commodity agricultural forecasting, addressing cross-commodity substitution effects previously unexplored while offering complementary perspectives for both predictive accuracy and economic policy interpretation.
Downloads
[1] Department of International Trade Promotion. (2021). Thailand’s durian export statistics 2020, Department of International Trade Promotion, Nonthaburi, Thailand.
[2] Ministry of Agriculture and Cooperatives. (2022). Thailand durian production and export statistics 2021, Ministry of Agriculture and Cooperatives, Bangkok, Thailand.
[3] Department of International Trade Promotion. (2023). Thai durian export statistics report 2022, Department of International Trade Promotion, Nonthaburi, Thailand.
[4] Rangkakulnuwat, P. (2024). Are Thailand's mangosteen and durian complementary in the global market? Journal of Agribusiness and Rural Development Research, 10(1), 70-89. doi:10.18196/agraris.v10i1.220.
[5] Mancero-Castillo, D., Garcia, Y., Aguirre-Munizaga, M., Leon, D. P., Portalanza, D., & Avila-Santamaria, J. (2024). Dynamic perspectives into tropical fruit production: A review of modeling techniques. Frontiers in Agronomy, 6, 1482893. doi:10.3389/fagro.2024.1482893
[6] Pengjun, W. (2015). Factors affecting the export of fresh durian from Thailand to China, University of the Thai Chamber of Commerce. Bangkok, Thailand.
[7] Charik, K. (2012). Forecasting rubber price using artificial neural network, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.
[8] Sutthison, T. (2022). Application of a long short - term memory deep natural network model for field crops price forecasting in Thailand. The Journal of Industrial Technology, 18(3), 208-227. doi:10.14416/j.ind.tech.2022.12.013.
[9] Yu, L., Liang, S., Chen, R., & Lai, K. K. (2022). Predicting monthly biofuel production using a hybrid ensemble forecasting methodology. International Journal of Forecasting, 38(1), 3-20. doi:10.1016/j.ijforecast.2019.08.014.
[10] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735.
[11] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003.
[12] Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice. OTexts, Melbourne, Australia.
[13] Caputo, V., Scarpa, R., & Nayga Jr, R. M. (2025). Plant-based versus conventional meat in food away from home settings: Substitution, complementarity, and market impacts. Agricultural Economics, 56(2), 158-175. doi:10.1111/agec.70002.
[14] Jatuporn, C. (2024). Cross-commodity market integration and price transmission in Thailand's livestock sector. Scientific Horizons, 27(8), 137-146. doi:10.15421/horizons27081.
[15] Santana, T. P., Horta, N. R., Chambino, M. R., Dias, R. M. T. S., Vasconcelos, R. N., Filho, A. M. da S., & Zebende, G. F. (2023). Interdependence and contagion effects in agricultural commodities markets: A bibliometric analysis, implications, and insights for sustainable development. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 907-940. doi:10.24136/eq.2023.029
[16] Chen, L., Wang, Y., & Liu, X. (2023). Deep learning approaches for crop yield prediction using artificial neural networks: A comprehensive analysis. Computers and Electronics in Agriculture, 189, 106-118. doi:10.1016/j.compag.2023.106118.
[17] Kumar, S., & Singh, R. (2024). Application of artificial neural networks in precision agriculture: A systematic review of recent advances. Computers and Electronics in Agriculture, 195, 107-125. doi:10.1016/j.compag.2024.107125.
[18] Patel, M., Thompson, J., & Anderson, K. (2023). Long short-term memory networks for agricultural time series forecasting: Performance evaluation and optimization strategies. Neural Networks, 142, 85-98. doi:10.1016/j.neunet.2023.85098
[19] Zhang, H., Rodriguez, C., & Kim, D. (2024). LSTM-based models for multi-scale agricultural forecasting: Integration of meteorological and satellite data. Computers and Electronics in Agriculture, 198, 112-128. doi:10.1016/j.compag.2024.112128.
[20] Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685-725. doi:10.1146/annurev-economics-080218-02541.
[21] Storm, H., Baylis, K., & Heckelei, T. (2020). Machine learning in agricultural and applied economics. European Review of Agricultural Economics, 47(3), 849-892. doi:10.1093/erae/jbz033.
[22] Zhang, L., Ruiz-Menjivar, J., Luo, B., Liang, Z., Swisher, M.E., 2020. Predicting climate change mitigation and adaptation behaviors in agricultural production: a comparison of the theory of planned behavior and the Value-Belief-Norm Theory. Journal of Environmental Psychology. 68, 101408. doi:10.1016/j.jenvp.2020.101408.
[23] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. doi:10.1038/nature14539
[24] Goodfellow, I., Bengio, Y., & Courvill, A. (2016). Deep Learning. The MIT Press, Cambridge, United Kingdom.
[25] Boonrod, P., & Polyeam, K. (2017). A cassava price forecasting model using a multi-layer artificial neural network. Thai Science and Technology Journal, 25, 533-543.
[26] Sajaviriya, T. (2018). Neural network model for monthly forecasting of maize prices in Thailand. Srinakharinwirot Science Journal, 34(1), 91-108.
[27] Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM). Physica D: Nonlinear Phenomena, 404, 132306. doi:10.1016/j.physd.2019.132306.
[28] Ahnaf, M. S., & Kurniawati, A. H. D. (2021). Forecasting pet food item stock using ARIMA and LSTM. 4th International Conference of Computer and Informatics Engineering, 14-15 September 2021, Depok, Indonesia. doi:10.1109/IC2IE53219.2021.9649271.
[29] Ruangrit, P., Jatuporn, C., Suwanwihok, W., & Wanaset, A. (2020). Forecasting durian prices in Thailand and Thailand's durian export prices. Maejo Business Review, 2(2), 19-31. doi:10.14456/mjba.2020.7.
[30] Deepradit, S., & Raksorn, P. (2021). A comparison of forecasting techniques for crop prices in Thailand. The Journal of Industrial Technology, 17(3), 214-231. doi:10.14416/j.ind.tech.2021.12.008.
[31] Charuwan, S., & Supapakorn, T. (2023). Forecasting model for the export value of rubber of Thailand. Science and Technology Nakhon Sawan Rajabhat University Journal, 12(15), 59-82.
[32] Zhang, T., & Tang, Z. (2024). Agricultural commodity futures prices prediction based on a new hybrid forecasting model combining quadratic decomposition technology and LSTM model. Frontiers in Sustainable Food Systems, 8, 1334098. doi:10.3389/fsufs.2024.1334098.
[33] Choudhary, K., Jha, G.K., Jaiswal, R., Kumar, A., Sharma, R., & Singh, S. (2025). A genetic algorithm optimized hybrid model for agricultural price forecasting based on VMD and LSTM network. Scientific Reports, 15, 9932. doi:10.1038/s41598-025-94173-0.
[34] Pandit, P., Sagar, A., Ghose, B., Kumar, A., & Singh, R. (2024). Hybrid modeling approaches for agricultural commodity prices using CEEMDAN and time delay neural networks. Scientific Reports, 14, 26639. doi:10.1038/s41598-024-74503-4
[35] Mohan, R. N. V. J., Rayanoothala, P. S., & Sree, R. P. (2024). Next-gen agriculture: Integrating AI and XAI for precision crop yield predictions. Frontiers in Plant Science, 15, 1451607. doi:10.3389/fpls.2024.1451607.
[36] Lisawadi, S., Kamlangdee, P., Volodin, A., & Tulyanitikul, B. (2025). A hybrid machine learning techniques and statistical model for forecasting the export value of durian. Lobachevskii Journal of Mathematics, 46(2), 750-762.
[37] Li, Y., Chen, X., Wang, Z., & Liu, H. (2025). Revolutionizing agricultural stock volatility forecasting: A comparative study of machine learning and HAR-RV models. Applied Economics Letters, 28(1), 2454081. doi:10.1080/15140326.2025.2454081.
[38] Kumar, A., Singh, R., Sharma, P., & Gupta, S. (2025). A novel hybrid neural network-based volatility forecasting of agricultural commodity prices: empirical evidence from India. Journal of Big Data, 12, 45. doi:10.1186/s40537-025-01131-8.
[39] Nagendra, B., & Singh, G. (2023). Comparing ARIMA, linear regression, random forest, and LSTM for time series forecasting: A study on item stock predictions. 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), 6-8 October 2023, Bangalore, India. doi:10.1109/GCAT59970.2023.10353372.
[40] Kummaraka, U., & Srisuradetchai, P. (2024). Time-series interval forecasting with dual-output Monte Carlo dropout: A case study on durian exports. Forecasting, 6(3), 616-636. doi:10.3390/forecast6030033.
[41] Srisuradetchai, P. (2024). A novel interval forecast for K-nearest neighbor time series: A case study of durian export in Thailand. IEEE Access, 12, 2032-2044. doi:10.1109/access.2023.3348078.
[42] Nagurney, A., Besik, D., & Yu, M. (2024). Multicommodity international agricultural trade network equilibrium: Competition for limited production and transportation capacity under disaster scenarios. European Journal of Operational Research, 312(1), 45-62.
[43] Vapnik, V. N. (1998). Statistical learning theory, John Wiley & Sons, New York, United States.
[44] World Bank Group. (2023). World Bank Data: China. World Bank Group, Washington, D.C., United States. Available online: https://data.worldbank.org/country/CN (accessed December 2025).
[45] Office of Agricultural Economics. (2022). Agricultural economics data: Durian, Office of Agricultural Economics, Ministry of Agriculture and Cooperatives, Bangkok, Thailand.
[46] Kulvanich, N. (2020). Enhancing the accuracy of time series forecasting with a hybrid ARIMA-ANN model and regression analysis. Thai Science and Technology Journal, 28, 2101-2112.
[47] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer, Cham, Switzerland. doi:10.1007/978-1-4614-7138-7.
[48] Chouaibi, S., & Affes, H. (2021). The effect of social and ethical practices on environmental disclosure: evidence from an international ESG data. Corporate Governance: The International Journal of Business in Society, 21(7), 1293-1317. doi:10.1108/CG-03-2020-0087.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















