Rateless Polar Codes Exploiting Repetition Coding Principle with EXIT Analysis for Broadband Transmissions
Downloads
This paper proposes a novel design of polar codes for rateless transmissions employing extended parity (EP) to enhance performance under broadband channel conditions. The idea of the proposed design is to achieve diversity across all samples by employing simple butterfly XOR operations, which inherently support rateless broadband transmissions. In particular, the design exploits the principle of repetition, where simple XOR operations do not only contribute to error protection but also strengthen the polarization effect and reinforce the rateless property of polar codes. The proposed codes are evaluated over Rayleigh fading, fully interleaved, and additive white Gaussian noise (AWGN) channels. The results show that the proposed codes achieve significant performance improvements, particularly in AWGN and fully interleaved environments, thereby confirming that the use of XOR operations effectively enhances transmission reliability. Furthermore, the proposed codes are investigated through extrinsic information transfer (EXIT) analysis using closed-form expressions. The analysis reveals that the decoding process exhibits faster convergence when EP is employed. In addition, computational complexity analysis shows that the additional overhead introduced by EP remains minimal. Importantly, the proposed structure preserves the standard polar transform and decoding graph, ensuring scalability similar to conventional polar codes. Hence, the proposed design balances performance and computational efficiency, making it a compelling solution for broadband scenarios and dynamic channel environments.
Downloads
[1] Miao, S., Kestel, C., Johannsen, L., Geiselhart, M., Schmalen, L., Balatsoukas-Stimming, A., Liva, G., Wehn, N., & Brink, S. Ten. (2024). Trends in Channel Coding for 6G. Proceedings of the IEEE, 112(7), 653–675. doi:10.1109/JPROC.2024.3416050.
[2] Yang, H., Liang, E., Pan, M., & Wesel, R. D. (2022). CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime. IEEE Transactions on Information Theory, 68(6), 3744–3766. doi:10.1109/TIT.2022.3150717.
[3] Sui, W., Towell, B., Asmani, A., Yang, H., Grissett, H., & Wesel, R. D. (2024). CRC-Aided High-Rate Convolutional Codes with Short Blocklengths for List Decoding. IEEE Transactions on Communications, 72(1), 63–74. doi:10.1109/TCOMM.2023.3324370.
[4] Ranganathan, S. V. S., Divsalar, D., & Wesel, R. D. (2019). Quasi-Cyclic Protograph-Based Raptor-Like LDPC Codes for Short Block-Lengths. IEEE Transactions on Information Theory, 65(6), 3758–3777. doi:10.1109/TIT.2019.2895322.
[5] Arikan, E. (2009). Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7), 3051–3073. doi:10.1109/TIT.2009.2021379.
[6] Piao, J., Niu, K., Dai, J., & Dong, C. (2020). Approaching the Normal Approximation of the Finite Blocklength Capacity within 0.025 dB by Short Polar Codes. IEEE Wireless Communications Letters, 9(7), 1089–1092. doi:10.1109/LWC.2020.2981432.
[7] Choi, G., & Lee, N. (2024). Deep Polar Codes. IEEE Transactions on Communications, 72(7), 3842–3855. doi:10.1109/TCOMM.2024.3374355.
[8] Nurbani, C. A., Anwar, K., & Cahyadi, W. A. (2021). Hybrid Multikernel-Constructed Polar Codes for Short Blocklength Transmissions. 2021 International Wireless Communications and Mobile Computing (IWCMC), 724–728. doi:10.1109/iwcmc51323.2021.9498898.
[9] Gamage, H., Ranasinghe, V., Rajatheva, N., & Latva-aho, M. (2020). Low Latency Decoder for Short Blocklength Polar Codes. 2020 European Conference on Networks and Communications (EuCNC), 305–310. doi:10.1109/eucnc48522.2020.9200964.
[10] Wan, H., & Nosratinia, A. (2023). Short-Block Length Polar-Coded Modulation for the Relay Channel. IEEE Transactions on Communications, 71(1), 26–39. doi:10.1109/TCOMM.2022.3225546.
[11] Luby, M. (2002). LT codes. The 43rd Annual IEEE Symposium on Foundations of Computer Science. Proceedings. doi:10.1109/SFCS.2002.1181950.
[12] Tian, S., Li, Y., Shirvanimoghaddam, M., & Vucetic, B. (2013). A physical-layer rateless code for wireless channels. IEEE Transactions on Communications, 61(6), 2117–2127. doi:10.1109/TCOMM.2013.042313.120159.
[13] Anggraeni, C. D., & Anwar, K. (2021). Design of Rateless Polar Accumulate Tornado Codes Using EXIT Chart for UAV Communications. 2021 IEEE Symposium on Future Telecommunication Technologies (SOFTT), 63–68. doi:10.1109/SOFTT54252.2021.9673142.
[14] Sobiroh, I. F. E., Anwar, K., & Mukhtar, H. (2020). Rateless Raptor Codes for Reliable Wireless Capsule Endoscopy (WCE). 2020 27th International Conference on Telecommunications (ICT), 1–5. doi:10.1109/ict49546.2020.9239424.
[15] Borujeny, R. R., & Ardakani, M. (2016). A new class of rateless codes based on reed-solomon codes. IEEE Transactions on Communications, 64(1), 49–58. doi:10.1109/TCOMM.2015.2502952.
[16] Liang, H., Liu, A., Zhang, Y., Cheng, F., & Yi, X. (2018). A Throughput-Efficient Rateless Scheme of Polar Codes. 018 10th International Conference on Wireless Communications and Signal Processing (WCSP), 1–7. doi:10.1109/WCSP.2018.8555651.
[17] Schnelling, C., Rothe, M., Mathar, R., & Schmeink, A. (2018). Rateless Codes Based on Punctured Polar Codes. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 1–5. doi:10.1109/ISWCS.2018.8491237.
[18] Liang, H., Liu, A., Cheng, F., & Liang, X. (2019). Rateless Polar-Spinal Coding Scheme with Enhanced Information Unequal Error Protection. IEEE Access, 7, 145996–146004. doi:10.1109/ACCESS.2019.2946167.
[19] Feng, B., Zhang, Q., & Jiao, J. (2017). An Efficient Rateless Scheme Based on the Extendibility of Systematic Polar Codes. IEEE Access, 5, 23223–23232. doi:10.1109/ACCESS.2017.2762363.
[20] Li, B., Tse, D., Chen, K., & Shen, H. (2016). Capacity-achieving rateless polar codes. 2016 IEEE International Symposium on Information Theory (ISIT), 46–50. doi:10.1109/ISIT.2016.7541258.
[21] Liang, H., Liu, A., Gong, C., & Liu, X. (2020). Rateless Coding Schemes Using Polar Codes: Truly “No” Rates? IEEE Access, 8, 2428–2440. doi:10.1109/ACCESS.2019.2962056.
[22] Liu, S., Hong, Y., & Viterbo, E. (2017). Polar Codes for Block Fading Channels. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 1–6. doi:10.1109/WCNCW.2017.7919041.
[23] Niu, K., & Li, Y. (2021). Polar Coded Diversity on Block Fading Channels via Polar Spectrum. IEEE Transactions on Signal Processing, 69, 4007–4022. doi:10.1109/TSP.2021.3094652.
[24] Brink, S. Ten. (2001). Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications, 49(10), 1727–1737. doi:10.1109/26.957394.
[25] Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on Information Theory, 8(1), 21–28. doi:10.1109/tit.1962.1057683.
[26] Ten Brink, S., Kramer, G., & Ashikhmin, A. (2004). Design of low-density parity-check codes for modulation and detection. IEEE Transactions on Communications, 52(4), 670–678. doi:10.1109/TCOMM.2004.826370.
[27] Mufassa, F. H., & Anwar, K. (2019). Extrinsic Information Transfer (EXIT) Analysis for Short Polar Codes. 3rd Symposium on Future Telecommunication Technologies, SOFTT 2019, 1-6. doi:10.1109/SOFTT48120.2019.9068617.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















