Artificial Intelligence and Business Process Management: A Responsible Framework for Sustainable Transformation
Downloads
This study aims to develop a responsible and sustainable framework for implementing artificial intelligence (AI) in business process management (BPM), with a focus on aligning technological advancement with strategic economic transformation. It addresses the need for ethical, sector-sensitive AI adoption in emerging economies undergoing digital modernization and diversification. The research integrates enterprise information system considerations, privacy-preserving modular architectures, and national regulatory frameworks related to data localization and cybersecurity. A sectoral analysis is conducted to assess global AI adoption maturity and its implications for economic transformation, using Kazakhstan as a contextual reference point. The results reveal that consumer-facing sectors such as retail and financial services exhibit high near-term adoption potential, while healthcare requires gradual infrastructure and talent development. More significantly, mid-term opportunities in manufacturing, logistics, and transportation sectors present Kazakhstan with a comparative advantage. AI adoption in manufacturing is projected to grow by 83% within three to seven years, underscoring the importance of timely investments in automation, smart technologies, and workforce upskilling. This study contributes a context-aware framework for responsible AI-enabled BPM. It offers actionable insights for policymakers and business leaders in emerging economies, advocating for sectoral prioritization, strategic timing, and capacity-building to ensure sustainable digital transformation.
Downloads
[1] Bureau of National Statistics (2025). Expenses and incomes of the population (II quarter of 2025). Bureau of National Statistics, Astana, Kazakhstan. Available online: https://stat.gov.kz/en/industries/labor-and-income/stat-life/publications/441047/ (accessed on December 2025).
[2] Ademola, A., George, C., & Mapp, G. (2024). Addressing the Interoperability of Electronic Health Records: The Technical and Semantic Interoperability, Preserving Privacy and Security Framework. Applied System Innovation, 7(6), 116. doi:10.3390/asi7060116.
[3] Akzambekkyzy, A., Vasa, L., Forrest, J. Y. L., Sarkambayeva, S., & Singh, S. (2024). Impact of Projects with Future Potential on the Global Competitiveness Index of Countries. Emerging Science Journal, 8(2), 557–573. doi:10.28991/ESJ-2024-08-02-012.
[4] Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, C. B. (2021). Organizational business intelligence and decision making using big data analytics. Information Processing & Management, 58(6), 102725. doi:10.1016/j.ipm.2021.102725.
[5] Gussarova, A. (2026). Cyber Age. eGov Kazakhstan, Astana, Kazakhstan. Available online: https://www.egov.kz (accessed on December 2025).
[6] Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., ... & Clark, J. (2024). Artificial intelligence index Report 2024. arXiv Preprint, arXiv:2405.19522. doi:10.48550/arXiv.2405.19522.
[7] Balan, G. S., Kumar, V. S., & Raj, S. A. (2025). Machine learning and artificial intelligence methods and applications for post-crisis supply chain resiliency and recovery. Supply Chain Analytics, 10, 100121. doi:10.1016/j.sca.2025.100121.
[8] Bernardo, B.M.V., Mamede, H. S., Barroso, J.M.P., & dos Santos, V.M.P.D. (2024). Data governance & quality management—Innovation and breakthroughs across different fields. Journal of Innovation and Knowledge, 9(4), 100598. doi:10.1016/j.jik.2024.100598.
[9] Blanchard, A., & Taddeo, M. (2023). The Ethics of Artificial Intelligence for Intelligence Analysis: A Review of the Key Challenges with Recommendations. Digital Society, 2(1), 12. doi:10.1007/s44206-023-00036-4.
[10] Brous, P., Janssen, M., & Herder, P. (2020). The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations. International Journal of Information Management, 51. doi:10.1016/j.ijinfomgt.2019.05.008.
[11] Wales, C. E. (1986). Decision Making: New Paradigm for Education. Educational Leadership, 43(8), 37-41.
[12] Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165–1188. doi:10.2307/41703503.
[13] KPMG International (2024). Top CEOs navigate global turbulence by betting big on AI. KPMG International, Amsterdam, Netherlands. Available online: https://kpmg.com/xx/en/media/press-releases/2024/09/top-ceos-navigate-global-turbulence-by-betting-big-on-ai.html (accessed on December 2025).
[14] Global CIO (2025). Current aspects of digitalization in Uzbekistan. Global CIO, Tashkent, Uzbekistan. Available online: https://globalcio.com/articles/main/current-aspects-of-digitalization-in-uzbekistan/ (accessed on December 2025).
[15] Denissova, O., Konurbayeva, Z., Kulisz, M., Yussubaliyeva, M., & Suieubayeva, S. (2025). Measuring the Digital Economy in Kazakhstan: From Global Indices to a Contextual Composite Index (IDED). Economies, 13(8), 225. doi:10.3390/economies13080225.
[16] Law of the Republic of Kazakhstan (2003). Document from CIS Legislation database. CIS Legislation Portal, Minsk, Belarus. Available online: https://cis-legislation.com/document.fwx?rgn=80847 (cis-legislation.com in Bing) (accessed on December 2025).
[17] Dumas, M., Fournier, F., Limonad, L., Marrella, A., Montali, M., Rehse, J. R., ... & Weber, I. (2023). AI-augmented business process management systems: a research manifesto. ACM Transactions on Management Information Systems, 14(1), 1-19. doi:10.1145/3576047.
[18] Southeast Asia’s Green Economy Report (2022). Southeast Asia’s Green Economy 2022 Report. Southeast Asia Green Economy Consortium, Singapore.
[19] Eitel-Porter, R. (2021). Beyond the promise: implementing ethical AI. AI and Ethics, 1(1), 73-80. doi:10.1007/s43681-020-00011-6.
[20] Fettke, P., & Di Francescomarino, C. (2025). Business Process Management and Artificial Intelligence: Literature Survey and Future Research. KI - Kunstliche Intelligenz, 39(2), 67–79. doi:10.1007/s13218-025-00891-y.
[21] Fujitsu Global (2025). Five Steps to Demonstrating AI Business Value: A Tactical Blueprint. Fujitsu Limited, Tokyo, Japan. Available online: https://corporate-blog.global.fujitsu.com/fgb/2025-03-27/01/ (accessed on December 2025).
[22] Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. doi:10.1007/s11023-018-9482-5.
[23] Gandia, J. A. G., de Lucas Ancillo, A., & del Val Núñez, M. T. (2025). The Role of Artificial Intelligence and Knowledge in Enhancing Corporate Sustainability. Journal of Innovation & Knowledge, 10(5), 100792. doi:10.1016/j.jik.2025.100792.
[24] Georgescu, M. R., & Schmuck, M. (2025). Data Governance as the Digital Backbone of Proactive Obsolescence Management: A Design Science Case Study in Asset-Intensive Industries. Economies, 13(9), 272. doi:10.3390/economies13090272.
[25] Gogoberishvili, M. L., & Bayar, Ö. E. (2023). Reassessing GDP Growth in Countries with Statistical Shortcomings-A Case Study on Turkmenistan. International Monetary Fund, Washington, D.C., United States.
[26] Guidi, S. (2023). Innovation Commons for the Data Economy. Digital Society, 2(2), 31. doi:10.1007/s44206-023-00059-x.
[27] Ho, D. B., Duong, C. D., Tran, M. L., Luong, T. S., & Tran, T. P. H. (2025). Big data analytics powered by artificial intelligence and entrepreneurial resilience: A moderated mediation model of technological turbulence and business innovation model. Journal of Open Innovation: Technology, Market, and Complexity, 11(3), 100611. doi:10.1016/j.joitmc.2025.100611.
[28] Hurbean, L., Militaru, F., Munteanu, V. P., Danaiata, D., Fotache, D., & Muntean, M. (2025). Assessing the Influence of Business Intelligence and Analytics and Data-Driven Culture on Managerial Performance: Evidence from Romania. Systems, 13(1), 2. doi:10.3390/systems13010002.
[29] Government of the Republic of Kazakhstan (2024). Innovations in public services: New digital solutions for business and citizens. Prime Minister’s Office, Astana, Kazakhstan. Available online: https://primeminister.kz/en/news/innovations-in-public-services-new-digital-solutions-for-business-and-citizens-29877 (accessed on December 2025).
[30] Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. doi:10.1038/s42256-019-0088-2.
[31] KPMG Kazakhstan (2025). Kazakhstan AI Readiness Report (English version). KPMG Kazakhstan, Almaty, Kazakhstan. Available online: https://assets.kpmg.com/content/dam/kpmg/kz/pdf/2025/03/Kazakhstan-AI-Readiness-eng.pdf (accessed on December 2025).
[32] Heeks, R. (2018). Information and communication technology for development (ICT4D). Routledge, London, United Kingdom.
[33] Digital Watch Observatory (2025). Kazakhstan’s concept for the development of artificial intelligence for 2024–2029. DiploFoundation / Digital Watch Observatory, Geneva, Switzerland. Available online: https://dig.watch/resource/kazakhstans-concept-for-the-development-of-artificial-intelligence-for-2024-2029 (accessed on December 2025).
[34] Times of Central Asia (2024). Kazakhstan’s digital minister gives update on IT services exports. Times of Central Asia, Bishkek, Kyrgyzstan. Available online: https://timesca.com/kazakhstans-digital-minister-gives-update-on-it-services-exports/ (accessed on December 2025).
[35] Transcend.io (2025). AI ethics. Transcend, San Francisco, United States. Available online: https://transcend.io/blog/ai-ethics (accessed on December 2025).
[36] Osmanova, D., Kapsalyamova, S., Maratovna, Y., Baizhanov, Y., & Ryskaliev, D. (2024). Legal Challenges of Regulating Generative Ai in Kazakhstan: A Comparative Assessment in Light of the EU Ai Act. SSRN Electronic Journal, 1-26. doi:10.2139/ssrn.5274268.
[37] Li, Y., Chen, H., Yu, P., & Yang, L. (2025). A review of artificial intelligence in enhancing architectural design efficiency. Applied Sciences, 15(3), 1476. doi:10.3390/app15031476.
[38] Committee on Statistics of Kazakhstan (2025). Macro-economic indicators and social development of the country. Committee on Statistics, Astana, Kazakhstan.
[39] Mandon, P. (2025). Beyond the AI divide: A straightforward approach to identifying global and local over performers in AI preparedness. Digital Business, 100136. doi:10.1016/j.digbus.2025.100136.
[40] Maroufkhani, P., Wagner, R., Wan Ismail, W. K., Baroto, M. B., & Nourani, M. (2019). Big data analytics and firm performance: A systematic review. Information (Switzerland), 10(7), 226. doi:10.3390/INFO10070226.
[41] Martin, K. (2022). Algorithmic Bias and Corporate Responsibility: How Companies Hide behind the False Veil of the Technological Imperative. In Ethics of Data and Analytics, 36–50. doi:10.1201/9781003278290-7.
[42] Martins, J., & Veiga, L. G. (2022). Digital government as a business facilitator. Information Economics and Policy, 60. doi:10.1016/j.infoecopol.2022.100990.
[43] Meyer, H., Yee, L., Chui, M., & Roberts, R. (2025). Superagency in the Workplace—Empowering people to unlock AI’s full potential. McKinsey & Company, New York, United States.
[44] Medeiros, M. M. de, Hoppen, N., & Maçada, A. C. G. (2020). Data science for business: benefits, challenges and opportunities. Bottom Line, 33(2), 149–163. doi:10.1108/BL-12-2019-0132.
[45] Melnyk, L., Vasa, L., Singh, S., Kubatko, O., & Kalinichenko, L. (2025). Quasi-Viral Technologies as the Drivers of the Economy Digital Transformation Towards sustainability. HighTech and Innovation Journal, 6(1), 183–200. doi:10.28991/HIJ-2025-06-01-013.
[46] Moreira, S., Mamede, H. S., & Santos, A. (2025). Methodology for Business Process Automation in SMEs: From Requirements Analysis to Practical Demonstration. Emerging Science Journal, 9(3), 1561–1590. doi:10.28991/ESJ-2025-09-03-022.
[47] Muehlemann, S. (2025). Artificial intelligence adoption and workplace training. Journal of Economic Behavior and Organization, 238, 107206. doi:10.1016/j.jebo.2025.107206.
[48] Nabila, E. A., Santoso, S., Muhtadi, Y., & Tjahjono, B. (2021). Artificial Intelligence Robots and Revolutionizing Society In Terms Of Technology, Innovation, Work and Power. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 3(1), 46–52. doi:10.34306/itsdi.v3i1.526.
[49] National Statistical Committee of the Kyrgyz Republic (2025). Population. National Statistical Committee, Bishkek, Kyrgyzstan. Available online: https://www.stat.gov.kg/en/ (accessed on December 2025).
[50] I.T.U. (2024). Navigating Data Governance: A Guiding Tool for Regulators. Digital Regulation Platform / I.T.U., Geneva, Switzerland. Available online: https://digitalregulation.org/navigating-data-governance-a-guiding-tool-for-regulators/ (accessed on December 2025).
[51] Press Service of the Prime Minister of the Republic of Kazakhstan (2020). Official information source of the Prime Minister of the Republic of Kazakhstan. Available online: https://primeminister.kz/en/news/concept-for-artificial-intelligence-development-for-2024-2029-adopted-by-government-28786 (accessed on December 2025).
[52] Ojeda, A. M., Valera, J. B., & Diaz, O. (2025). Artificial Intelligence of Big Data for Analysis in Organizational Decision-Making. Global Journal of Flexible Systems Management, 26(3), 515–527. doi:10.1007/s40171-025-00450-2.
[53] Omirgazy, D. (2025). Kazakhstan’s digital revolution: From e‑government to AI superpower. Kazakh News, Astana, Kazakhstan. Available online: https://astanatimes.com/2025/07/kazakhstans-digital-revolution-from-e-government-to-ai-superpower/ (accessed on December 2025).
[54] PE734.777v01‑00 (2025). Rutte III cabinet falls; Wiebes completely gone. NOS, The Hague, Netherlands. Available online: https://nos.nl/collectie/13855/artikel/2364513-kabinet-rutte-iii-gevallen-wiebes-helemaal-weg (accessed on December 2025).
[55] UNECE (2019). Population by age, 2019. UNECE Statistical Database, Geneva, Switzerland. Available online: https://w3.unece.org/CountriesInFigures/en/Home/Index?countryCode=762 (accessed on December 2025).
[56] Republic of Armenia (2023). Social and economic development in the first half of 2023 and medium‑term prospective. Government of Armenia, Yerevan, Armenia.
[57] IBM (2026). Responsible AI. IBM Corporation, Armonk, New York, United States. Available online: https://www.ibm.com/trust/responsible-ai (accessed on December 2025).
[58] Shyngyssov, A., Kadyrov, B., Kaliyeva, J., & Lewis, M. (2024). Data Localization Laws: Overview (Kazakhstan) with Practical Law Data Privacy & Cybersecurity Applicability of Data Localization Laws Exemptions from Data Localization Laws Cross-Border Transfers of Data Stored in Kazakhstan Data Protection Law Communications Law and Communications Resolution, Bishkek, Kyrgyzstan.
[59] Singh, S. (2021). Environmental energy harvesting techniques to power standalone IoT-equipped sensor and its application in 5G communication. Emerging Science Journal, 4(November), 116-126. doi:10.28991/ESJ-2021-SP1-08.
[60] Singh, S., Rosak-Szyrocka, J., Drotár, I., & Fernando, X. (2023). Oceania’s 5G Multi-Tier Fixed Wireless Access Link’s Long-Term Resilience and Feasibility Analysis. Future Internet, 15(10), 334. doi:10.3390/fi15100334.
[61] Singh, S., Rosak-Szyrocka, J., & Tamàndl, L. (2023). Development, Service-Oriented Architecture, and Security of Blockchain Technology for Industry 4.0 IoT Application. HighTech and Innovation Journal, 4(1), 134–156. doi:10.28991/HIJ-2023-04-01-010.
[62] Singh, S., Singh, P., Rosak-Szyrocka, J., & Vasa, L. (2024). 5G Opportunities in the South Pacific: Leveraging Low-Band Spectrum for Socio-Economic Development. HighTech and Innovation Journal, 5(2), 508–533. doi:10.28991/HIJ-2024-05-02-020.
[63] State Committee of the Republic of Uzbekistan on Statistics (2024). Socio‑economic situation of the Republic of Uzbekistan in 2021. State Committee on Statistics, Tashkent, Uzbekistan.
[64] State Statistical Committee of the Republic of Azerbaijan (2025). Digital development in Azerbaijan: Official statistical yearbook. State Statistical Committee, Baku, Azerbaijan.
[65] National Statistics Office of Georgia (2023). Statistical Yearbook of Georgia 2023. National Statistics Office (Geostat), Tbilisi, Georgia. Available online: https://www.geostat.ge (accessed on December 2025).
[66] National Statistics Office of Georgia (2023). Gross Domestic Product (GDP): Statistics, methodology, metadata, calendar, projects. Geostat, Tbilisi, Georgia. Available online: https://www.geostat.ge/en/modules/categories/23/gross-domestic-product-gdp (accessed on December 2025).
[67] National Bank of the Republic of Kazakhstan (2025). Artificial intelligence in the financial market of Kazakhstan. National Bank, Astana, Kazakhstan. Available online: https://www.nationalbank.kz (accessed on December 2025).
[68] Implement Consulting Group (2025). The economic opportunity of AI in CCA. Implement Consulting Group, Copenhagen, Denmark. Available online: https://implementconsultinggroup.com/article/the-economic-opportunity-of-ai-in-cca (accessed on December 2025).
[69] Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Fundamentals of business process management (2nd ed.). Springer, Cham, Switzerland. doi:10.1007/978-3-662-56509-4.
[70] Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research commentary—Digital infrastructures: The missing IS research agenda. Information systems research, 21(4), 748-759. doi:10.1287/isre.ll00.0318.
[71] Statistical Committee of the Republic of Armenia (2025). Statistical database: Key indicators. Statistical Committee, Yerevan, Armenia. Available online: https://armstat.am/en/?nid=12&id=01001 (accessed on December 2025).
[72] Konsynski, B. R., & Bush, A. A. (2015). Research Commentary — Platform Evolution: Coevolution of Platform Architecture, Governance, and Environmental Dynamics Platform Evolution: Coevolution of Platform Architecture, Governance, and. Information Systems Research, 21(December 2010), 675–687. doi:10.1287/isre.ll00.0323.
[73] World Bank (2026). GDP (current US$): Turkmenistan. World Development Indicators, Washington, DC, USA. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=TM (accessed on December 2025).
[74] HLCP (2024). United Nations system white paper on AI governance: An analysis of the UN system’s institutional models, functions, and existing international normative frameworks applicable to AI governance. C.E.B., New York, United States.
[75] Van der Aalst, W. (2016). Process mining: Data science in action. Process Mining: Data Science in Action. Springer, Cham, Switzerland. doi:10.1007/978-3-662-49851-4.
[76] van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2017). Responsible Data Science. In Business and Information Systems Engineering. Responsible Data Science. Business and Information Systems Engineering. Springer, Cham, Switzerland. doi:10.1007/s12599-017-0487-z.
[77] Vyhmeister, E., Castane, G., Östberg, P.-O., & Thevenin, S. (2023). A responsible AI framework: pipeline contextualisation. AI and Ethics, 3(1), 175–197. doi:10.1007/s43681-022-00154-8.
[78] Waara, Å. (2025). Examining Digital Government Maturity Models: Evaluating the Inclusion of Citizens. Administrative Sciences, 15(3), 73. doi:10.3390/admsci15030073.
[79] Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84. doi:10.1111/jbl.12010.
[80] Chui, M., & Malhotra, S. (2018). Notes from the AI frontier: AI adoption advances, but foundational barriers remain. McKinsey Analytics, McKinsey & Company, New York, United States. Available online: https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain (accessed on December 2025).
[81] Weske, M. (2012). Business process management: Concepts, languages, architectures. Springer, Berlin, Germany. doi:10.1007/978-3-642-28616-2.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















