Antidiabetic Properties of Uncaria sclerophylla Roxb: In Vitro, Metabolite Profiling, and Molecular Docking
Downloads
Uncaria sclerophylla Roxb is a traditional medicinal plant used to treat diabetes mellitus in Kalimantan, Indonesia, and the antidiabetic properties of its stem bark have not been previously investigated. This research will focus on investigating the potential of U. sclerophylla stem bark as an antidiabetic with the mechanism of inhibiting dipeptidyl peptidase-4, α-glucosidase, and antioxidants from extracts to chromatographic fractions, including the exploration of the major compounds contained in the most active chromatographic fraction. Extraction using a four-grade maceration technique, bioassays were carried out using spectrophotometric methods, fractionation using gradient column chromatography, and compound profiling using UHPLC-Q-ToF-MS/MS. The profiled compounds were predicted for their bioactivity in silico. The stem bark of U. sclerophylla demonstrated antidiabetic potential, and the methanol extract showed superior antidiabetic potential compared with the other extracts. From the extract, the most active chromatographic fraction, FUS2, was successfully obtained, which had the best activity with DPP-4 inhibition IC50 of 83.07 ± 6.3393 µg/mL, α-glucosidase inhibition IC50 of 58.06 ± 1.6226 µg/mL, and antioxidant IC50 of 8.47 ± 0.0443 (DPPH method) and 8.47 ± 0.0234 µg/mL (FRAP method). Compound profiling of FUS2 and in silico bioassays revealed potential antidiabetic compounds, including rhynchophyllic acid, arecatannin A2, silydianin, and procyanidin A2.
Downloads
[1] WHO. (2016). Global Report on Diabetes. World Health Organization Press, Geneva, Switzerland.
[2] Chen, T. H., Fu, Y. S., Chen, S. P., Fuh, Y. M., Chang, C., & Weng, C. F. (2021). Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomedicine and Pharmacotherapy, 134(February 2021), 111151. doi:10.1016/j.biopha.2020.111151.
[3] Hossain, M. J., Al-Mamun, M., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3), 1–5. doi:10.1002/hsr2.2004.
[4] Chen, M., Pu, L., Gan, Y., Wang, X., Kong, L., Guo, M., Yang, H., Li, Z., & Xiong, Z. (2024). The association between variability of risk factors and complications in type 2 diabetes mellitus: a retrospective study. Scientific Reports, 14(1), 6357. doi:10.1038/s41598-024-56777-w.
[5] Zaresharifi, S., Niroomand, M., Borran, S., & Dadkhahfar, S. (2024). Dermatological side effects of dipeptidyl Peptidase-4 inhibitors in diabetes management: a comprehensive review. Clinical Diabetes and Endocrinology, 10(1), 6. doi:10.1186/s40842-024-00165-w.
[6] Gilbert, M. P., & Pratley, R. E. (2020). GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Frontiers in Endocrinology, 11, 178. doi:10.3389/fendo.2020.00178.
[7] Saini, K., Sharma, S., & Khan, Y. (2023). DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Frontiers in Molecular Biosciences, 10, 1130625. doi:10.3389/fmolb.2023.1130625.
[8] Dirir, A. M., Daou, M., Yousef, A. F., & Yousef, L. F. (2022). A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews, 21(4), 1049–1079. doi:10.1007/s11101-021-09773-1.
[9] Shafras, M., Sabaragamuwa, R., & Suwair, M. (2024). Role of dietary antioxidants in diabetes: An overview. Food Chemistry Advances, 4, 100666. doi:10.1016/j.focha.2024.100666.
[10] Raghuvanshi, D. S., Chakole, S., & Kumar, M. (2023). Relationship between Vitamins and Diabetes. Cureus, 15(3), 36815. doi:10.7759/cureus.36815.
[11] Fatima, M. T., Bhat, A. A., Nisar, S., Fakhro, K. A., & Al-Shabeeb Akil, A. S. (2023). The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon, 9(1), e12698. doi:10.1016/j.heliyon.2022.e12698.
[12] Tuell, D. S., Los, E. A., Ford, G. A., & Stone, W. L. (2023). The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants, 12(6), 1139. doi:10.3390/antiox12061139.
[13] Kanwugu, O. N., Glukhareva, T. V., Danilova, I. G., & Kovaleva, E. G. (2022). Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Critical Reviews in Food Science and Nutrition, 62(18), 5005–5028. doi:10.1080/10408398.2021.1881434.
[14] Rahman, M. M., Dhar, P. S., Sumaia, Anika, F., Ahmed, L., Islam, M. R., Sultana, N. A., Cavalu, S., Pop, O., & Rauf, A. (2022). Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomedicine and Pharmacotherapy, 152, 113217. doi:10.1016/j.biopha.2022.113217.
[15] Ansari, P., Samia, J. F., Khan, J. T., Rafi, M. R., Rahman, M. S., Rahman, A. B., Abdel-Wahab, Y. H. A., & Seidel, V. (2023). Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients, 15(14), 3266. doi:10.3390/nu15143266.
[16] Zanzabil, K. Z., Hossain, M. S., & Hasan, M. K. (2023). Diabetes Mellitus Management: An Extensive Review of 37 Medicinal Plants. Diabetology, 4(2), 186–234. doi:10.3390/diabetology4020019.
[17] Ahmad, R., Hashim, H. M., Noor, Z. M., Ismail, N. H., Salim, Y., Lajis, N. H., & Shaari, K. (2011). Antioxidant and antidiabetic potential of Malaysian Uncaria. Research Journal of Medicinal Plant, 5(5), 587–595. doi:10.3923/rjmp.2011.587.595.
[18] Apea-Bah, F. B., Hanafi, M., Dewi, R. T., Fajriah, S., Darwaman, A., Artanti, N., Lotulung, P., Ngadymang, P., & Minarti, B. (2009). Assessment of the DPPH and α-glucosidase inhibitory potential of gambier and qualitative identification of major bioactive compound. Journal of Medicinal Plants Research, 3(10), 736–757. doi:10.5897/JMPR.9000279.
[19] Arundita, S., Kurniawan, F., Ismed, F., Rita, R. S., & Putra, D. P. (2020). In vitro alpha glucosidase activity of uncaria gambir roxb. And syzygium polyanthum (wight) walp. From West Sumatra, Indonesia. Open Access Macedonian Journal of Medical Sciences, 8(A), 810–817. doi:10.3889/oamjms.2020.4298.
[20] Viena, V., & Nizar, M. (2018). Studi Kandungan Fitokimia Ekstrak Etanol Daun Gambir Asal Aceh Tenggara Sebagai Anti Diabetes. Jurnal Serambi Engineering, 3(1), 240–247. doi:10.32672/jse.v3i1.352.
[21] Araujo, L. C. C., Feitosa, K. B., Murata, G. M., Furigo, I. C., Teixeira, S. A., Lucena, C. F., Ribeiro, L. M., Muscará, M. N., Costa, S. K. P., Donato, J., Bordin, S., Curi, R., & Carvalho, C. R. O. (2018). Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Scientific Reports, 8(1), 11013. doi:10.1038/s41598-018-29044-y.
[22] Zebua, E. A., Silalahi, J., & Julianti, E. (2018). Hypoglicemic activity of gambier (Uncaria gambir robx.) drinks in alloxan-induced mice. IOP Conference Series: Earth and Environmental Science, 122(1), 012088. doi:10.1088/1755-1315/122/1/012088.
[23] Domingues, A., Sartori, A., Golim, M. A., Valente, L. M. M., Da Rosa, L. C., Ishikawa, L. L. W., Siani, A. C., & Viero, R. M. (2011). Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both? Journal of Ethnopharmacology, 137(1), 635–642. doi:10.1016/j.jep.2011.06.021.
[24] Triadisti, N., Elya, B., Hanafi, M., & Hashim, N. M. (2024). Phytochemicals, Antioxidant and Inhibitory Activity against α-Glucosidase in Uncaria sclerophylla Twigs and Stems. International Journal of Agriculture and Biology, 31(3), 199–206. doi:10.17957/IJAB/15.2132.
[25] Triadisti, N., Elya, B., Hanafi, M., & Hashim, N. M. (2025). Bioactive chromatographic fractions from Uncaria sclerophylla (W.Hunter) Roxb. leaves on dipeptidyl peptidase-4 inhibition and antioxidant capacity, phytochemicals, and compound profiling using UPLC-ESI-QToF-MS/MS. Journal of Pharmacy and Pharmacognosy Research, 13(1), 58–85. doi:10.56499/jppres24.2022_13.1.58.
[26] Triadisti, N., Elya, B., Hanafi, M., Hashim, N. M., & Illahi, A. D. (2025). α-Glucosidase inhibitor compounds of Uncaria sclerophylla leaves’ most active chromatography fraction: In vitro, in silico, and ADMET analysis. Journal of Applied Pharmaceutical Science, 15(3), 228–240. doi:10.7324/JAPS.2025.215871.
[27] Heitzman, M. E., Neto, C. C., Winiarz, E., Vaisberg, A. J., & Hammond, G. B. (2005). Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry, 66(1), 5–29. doi:10.1016/j.phytochem.2004.10.022.
[28] Richardson, P. M., & Harborne, J. B. (1990). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Second Edition. Brittonia: Springer Dordrecht, Halesowen, United Kingdom. doi:10.2307/2807624.
[29] Sari, K. R. P., Ikawati, Z., Danarti, R., & Hertiani, T. (2023). Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry, 16(9), 105003. doi:10.1016/j.arabjc.2023.105003.
[30] Wairata, J., Fadlan, A., Setyo Purnomo, A., Taher, M., & Ersam, T. (2022). Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii King: A correlation study. Arabian Journal of Chemistry, 15(2), 103541. doi:10.1016/j.arabjc.2021.103541.
[31] Budipramana, K., Junaidin, J., Wirasutisna, K. R., Pramana, Y. B., & Sukrasno, S. (2019). An integrated in silico and in vitro assays of dipeptidyl peptidase-4 and α-glucosidase inhibition by stellasterol from Ganoderma australe. Scientia Pharmaceutica, 87(3), 1–9. doi:10.3390/scipharm87030021.
[32] Elya, B., Budiarso, F. S., Hanafi, M., Gani, M. A., & Prasetyaningrum, P. W. (2024). Two tetrahydroxyterpenoids and a flavonoid from Xylocarpus moluccensis M.Roem. and their α-glucosidase inhibitory and antioxidant capacity. Journal of Pharmacy and Pharmacognosy Research, 12(3), 454–476. doi:10.56499/jppres23.1816_12.3.453.
[33] Pereira, A. C. H., Lenz, D., Nogueira, B. V., Scherer, R., Andrade, T. U., Da Costa, H. B., Romão, W., Pereira, T. M. C., & Endringer, D. C. (2017). Gastroprotective activity of the resin from virola oleifera. Pharmaceutical Biology, 55(1), 472–480. doi:10.1080/13880209.2016.1251467.
[34] Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209. doi:10.1002/jsfa.6706.
[35] Zhang, Z., Wallace, M. B., Feng, J., Stafford, J. A., Skene, R. J., Shi, L., Lee, B., Aertgeerts, K., Jennings, A., Xu, R., Kassel, D. B., Kaldor, S. W., Navre, M., Webb, D. R., & Gwaltney, S. L. (2011). Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. Journal of Medicinal Chemistry, 54(2), 510–524. doi:10.1021/jm101016w.
[36] Yamamoto, K., Miyake, H., Kusunoki, M., & Osaki, S. (2010). Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS Journal, 277(20), 4205–4214. doi:10.1111/j.1742-4658.2010.07810.x.
[37] Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Docking Screens for Drug Discovery. Methods in Molecular Biology, 2053, 189–202. doi:10.1007/978-1-4939-9752-7.
[38] Praparatana, R., Maliyam, P., Barrows, L. R., & Puttarak, P. (2022). Flavonoids and Phenols, the Potential Anti-Diabetic Compounds from Bauhinia strychnifolia Craib. Stem. Molecules, 27(8), 2393. doi:10.3390/molecules27082393.
[39] Pan, J., Zhang, Q., Zhang, C., Yang, W., Liu, H., Lv, Z., Liu, J., & Jiao, Z. (2022). Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism. Frontiers in Nutrition, 9, 892426. doi:10.3389/fnut.2022.892426.
[40] Huang, P. K., Lin, S. R., Chang, C. H., Tsai, M. J., Lee, D. N., & Weng, C. F. (2019). Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Scientific Reports, 9(1). doi:10.1038/s41598-019-52088-7.
[41] Tuersuntuoheti, T., Pan, F., Zhang, M., Wang, Z., Han, J., Sun, Z., & Song, W. (2022). Prediction of DPP-IV inhibitory potentials of polyphenols existed in Qingke barley fresh noodles: In vitro and in silico analyses. Journal of Food Processing and Preservation, 46(10), 16808. doi:10.1111/jfpp.16808.
[42] Swargiary, A., Roy, M. K., & Mahmud, S. (2023). Phenolic compounds as α-glucosidase inhibitors: a docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 41(9), 3862–3871. doi:10.1080/07391102.2022.2058092.
[43] Chang, Y., Fan, W., Shi, H., Feng, X., Zhang, D., Wang, L., Zheng, Y., & Guo, L. (2022). Characterization of phenolics and discovery of α-glucosidase inhibitors in Artemisia argyi leaves based on ultra-performance liquid chromatography-tandem mass spectrometry and relevance analysis. Journal of Pharmaceutical and Biomedical Analysis, 220, 114982. doi:10.1016/j.jpba.2022.114982.
[44] Hassanpour, S. H., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine, 13(4), 354–376. doi:10.22038/AJP.2023.21774.
[45] Chen, S., Wang, X., Cheng, Y., Gao, H., & Chen, X. (2023). A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules, 28(13), 4982. doi:10.3390/molecules28134982.
[46] Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Shah, S. A. A., Sarian, M. N., Khattak, M. M. A. K., Khatib, A., Sabere, A. S. M., Yusoff, Y. M., & Latip, J. (2022). Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. International Journal of Molecular Sciences, 23(20), 12605. doi:10.3390/ijms232012605.
[47] Caro-Ordieres, T., Marín-Royo, G., Opazo-Ríos, L., Jiménez-Castilla, L., Moreno, J. A., Gómez-Guerrero, C., & Egido, J. (2020). The coming age of flavonoids in the treatment of diabetic complications. Journal of Clinical Medicine, 9(2), 346. doi:10.3390/jcm9020346.
[48] Manyawi, M., Mozirandi, W. Y., Tagwireyi, D., & Mukanganyama, S. (2023). Fractionation and Antibacterial Evaluation of the Surface Compounds from the Leaves of Combretum zeyheri on Selected Pathogenic Bacteria. Scientific World Journal, 2023(1), 2322068. doi:10.1155/2023/2322068.
[49] Larson, N. R., & Bou-Assaf, G. M. (2023). Increasing the Resolution of Field-Flow Fractionation with Increasing Crossflow Gradients. Analytical Chemistry, 95(44), 16138–16143. doi:10.1021/acs.analchem.3c02570.
[50] Nisar, J., Shah, S. M. A., Akram, M., Ayaz, S., & Rashid, A. (2022). Phytochemical Screening, Antioxidant, and Inhibition Activity of Picrorhiza kurroa Against α-Amylase and α-Glucosidase. Dose-Response, 20(2). doi:10.1177/15593258221095960.
[51] Matough, F. A., Budin, S. B., Hamid, Z. A., Alwahaibi, N., & Mohamed, J. (2012). The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University Medical Journal, 12(1), 556–569. doi:10.12816/0003082.
[52] Mathur, V., Alam, O., Siddiqui, N., Jha, M., Manaithiya, A., Bawa, S., Sharma, N., Alshehri, S., Alam, P., & Shakeel, F. (2023). Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules, 28(15), 5860. doi:10.3390/molecules28155860.
[53] Aguila-Muñoz, D. G., Jiménez-Montejo, F. E., López-López, V. E., Mendieta-Moctezuma, A., Rodríguez-Antolín, J., Cornejo-Garrido, J., & Cruz-López, M. C. (2023). Evaluation of α-Glucosidase Inhibition and Antihyperglycemic Activity of Extracts Obtained from Leaves and Flowers of Rumex crispus L. Molecules, 28(15), 5760. doi:10.3390/molecules28155760.
[54] Kashtoh, H., & Baek, K. H. (2022). Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants, 11(20), 2722. doi:10.3390/plants11202722.
[55] Behl, T., Gupta, A., Albratty, M., Najmi, A., Meraya, A. M., Alhazmi, H. A., Anwer, M. K., Bhatia, S., & Bungau, S. G. (2022). Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules, 27(18), 5851. doi:10.3390/molecules27185851.
[56] Salehi, B., Ata, A., Kumar, N. V. A., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Ayatollahi, S. A., Fokou, P. V. T., Kobarfard, F., Zakaria, Z. A., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., … Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. doi:10.3390/biom9100551.
[57] Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Frontiers in Endocrinology, 13, 800714. doi:10.3389/fendo.2022.800714.
[58] Iqbal, J., Andleeb, A., Ashraf, H., Meer, B., Mehmood, A., Jan, H., Zaman, G., Nadeem, M., Drouet, S., Fazal, H., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2022). Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Advances, 12(22), 14069–14083. doi:10.1039/d2ra01929a.
[59] Khalili, N., Fereydoonzadeh, R., Mohtashami, R., Mehrzadi, S., Heydari, M., & Huseini, H. F. (2017). Silymarin, Olibanum, and Nettle, A Mixed Herbal Formulation in the Treatment of Type II Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4), 603–608. doi:10.1177/2156587217696929.
[60] Awla, N. J., Naqishbandi, A. M., & Baqi, Y. (2023). Preventive and Therapeutic Effects of Silybum marianum Seed Extract Rich in Silydianin and Silychristin in a Rat Model of Metabolic Syndrome. ACS Pharmacology and Translational Science, 6(11), 1715–1723. doi:10.1021/acsptsci.3c00171.
[61] de Paulo Farias, D., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. doi:10.1016/j.foodres.2021.110383.
[62] Yamashita, Y., Okabe, M., Natsume, M., & Ashida, H. (2019). Cacao liquor procyanidins prevent postprandial hyperglycaemia by increasing glucagon-like peptide-1 activity and AMP-activated protein kinase in mice. Journal of Nutritional Science, 8(e2), 28. doi:10.1017/jns.2018.28.
[63] González-Abuín, N., Martínez-Micaelo, N., Blay, M., Pujadas, G., Garcia-Vallvé, S., Pinent, M., & Ardévol, A. (2012). Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. Journal of Agricultural and Food Chemistry, 60(36), 9055–9061. doi:10.1021/jf3010349.
[64] Kanda, K., Nishi, K., Kadota, A., Nishimoto, S., Liu, M. C., & Sugahara, T. (2012). Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction. Biochimica et Biophysica Acta - General Subjects, 1820(4), 461–468. doi:10.1016/j.bbagen.2011.11.015.
[65] Keshtkar, S., Kaviani, M., Jabbarpour, Z., Geramizadeh, B., Motevaseli, E., Nikeghbalian, S., Shamsaeefar, A., Motazedian, N., Al-Abdullah, I. H., Ghahremani, M. H., & Azarpira, N. (2019). Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Scientific Reports, 9(1), 11701. doi:10.1038/s41598-019-48262-6.
[66] Lee, Y. S., Cha, B. Y., Choi, S. S., Choi, B. K., Yonezawa, T., Teruya, T., Nagai, K., & Woo, J. T. (2013). Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. Journal of Nutritional Biochemistry, 24(1), 156–162. doi:10.1016/j.jnutbio.2012.03.014.
[67] Cherian, S., & Augusti, K. T. (1993). Antidiabetic effects of a glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Indian Journal of Experimental Biology, 31(1), 26–29.
[68] Nurcahyanti, A. D. R., Jap, A., Lady, J., Prismawan, D., Sharopov, F., Daoud, R., Wink, M., & Sobeh, M. (2021). Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomedicine and Pharmacotherapy, 144, 112138. doi:10.1016/j.biopha.2021.112138.
[69] Bharti, S. K., Krishnan, S., Kumar, A., & Kumar, A. (2018). Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Therapeutic Advances in Endocrinology and Metabolism, 9(3), 81–100. doi:10.1177/2042018818755019.
[70] Sarian, M. N., Ahmed, Q. U., Mat So’Ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad, S. N. A., Khatib, A., & Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 8386065. doi:10.1155/2017/8386065.
[71] Yi, X., Dong, M., Guo, N., Tian, J., Lei, P., Wang, S., Yang, Y., & Shi, Y. (2023). Flavonoids improve type 2 diabetes mellitus and its complications: a review. Frontiers in Nutrition, 10, 1192131. doi:10.3389/fnut.2023.1192131.
[72] Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. doi:10.3390/biom9090430.
[73] Sok Yen, F., Shu Qin, C., Tan Shi Xuan, S., Jia Ying, P., Yi Le, H., Darmarajan, T., Gunasekaran, B., & Salvamani, S. (2021). Hypoglycemic Effects of Plant Flavonoids: A Review. Evidence-Based Complementary and Alternative Medicine, 2057333. doi:10.1155/2021/2057333.
[74] Mohammed, M., & Fouad, M. (2022). Chemical and biological review on various classes of secondary metabolites and biological activities of Arecaceae (2021-2006). Journal of Advanced Biomedical and Pharmaceutical Sciences, 5(3), 113–150. doi:10.21608/jabps.2022.126338.1149.
[75] Yu, C. H. J., Migicovsky, Z., Song, J., & Rupasinghe, H. P. V. (2023). (Poly)phenols of apples contribute to in vitro antidiabetic properties: Assessment of Canada’s Apple Biodiversity Collection. Plants People Planet, 5(2), 225–240. doi:10.1002/ppp3.10315.
[76] Sieniawska, E. (2015). Activities of tannins-From in Vitro studies to clinical trials. Natural Product Communications, 10(11), 1877–1884. doi:10.1177/1934578x1501001118.
[77] Ajebli, M., Khan, H., & Eddouks, M. (2020). Natural Alkaloids and Diabetes Mellitus: A Review. Endocrine, Metabolic & Immune Disorders - Drug Targets, 21(1), 111–130. doi:10.2174/1871530320666200821124817.
[78] Laddha, A. P., & Kulkarni, Y. A. (2019). Tannins and vascular complications of Diabetes: An update. Phytomedicine, 56, 229–245. doi:10.1016/j.phymed.2018.10.026.
[79] Omar, N., Ismail, C. A. N., & Long, I. (2022). Tannins in the Treatment of Diabetic Neuropathic Pain: Research Progress and Future Challenges. Frontiers in Pharmacology, 12, 805854. doi:10.3389/fphar.2021.805854.
[80] Vaidyanathan, R., Murugan Sreedevi, S., Ravichandran, K., Vinod, S. M., Hari Krishnan, Y., Babu, L. K., Parthiban, P. S., Basker, L., Perumal, T., Rajaraman, V., Arumugam, G., Rajendran, K., & Mahalingam, V. (2023). Molecular docking approach on the binding stability of derivatives of phenolic acids (DPAs) with Human Serum Albumin (HSA): Hydrogen-bonding versus hydrophobic interactions or combined influences? JCIS Open, 12, 100096. doi:10.1016/j.jciso.2023.100096.
[81] Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2012). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157. doi:10.2174/157340911795677602.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















