Digital Financial Compliance Challenges: Applying Routine Activity Theory to Online Gambling Networks Analysis
Downloads
This study examines Indonesia's Financial Intelligence Unit (INTRAC) "follow the money" investigative techniques through Routine Activity Theory, analyzing criminal convergence in online gambling money laundering operations. Using qualitative methodology with interviews, observation, and document analysis (December 13-19, 2024), the research applied Cohen and Felson's framework to understand criminal patterns in digital financial ecosystems. Data analysis using Audit Command Language (ACL) revealed criminal convergence patterns where motivated offenders (84.63% male, 50% private sector employees, 53% aged 20-30) exploited digital infrastructure vulnerabilities. Sophisticated schemes included multiple nominee accounts, 5-8 layered transactions, and cryptocurrency laundering in low-surveillance environments. Transaction analysis showed expanding criminal opportunities, increasing to IDR 691.88 trillion (2017-2024). The study demonstrates how digital transformation creates suitable targets faster than regulatory adaptation. Research contributes theoretical insights explaining financial irregularity patterns through routine activity theory while offering practical risk reduction models for global financial intelligence units, advancing regulatory compliance theory and digital financial risk prevention.
Downloads
[1] Albrecht, C., Duffin, K. M. K., Hawkins, S., & Morales Rocha, V. M. (2019). The use of cryptocurrencies in the money laundering process. Journal of Money Laundering Control, 22(2), 210–216. doi:10.1108/JMLC-12-2017-0074.
[2] Choo, K. K. R. (2015). Cryptocurrency and Virtual Currency: Corruption and Money Laundering/Terrorism Financing Risks? In Handbook of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data, 283–307. doi:10.1016/B978-0-12-802117-0.00015-1.
[3] Gainsbury, S. M., Russell, A., Blaszczynski, A., & Hing, N. (2015). Greater involvement and diversity of Internet gambling as a risk factor for problem gambling. European Journal of Public Health, 25(4), 723–728. doi:10.1093/eurpub/ckv006.
[4] McMullan, J. L., & Rege, A. (2010). Online crime and internet gambling. Journal of Gambling Issues, 24(24), 54. doi:10.4309/jgi.2010.24.5.
[5] Europol. (2021). Cryptocurrencies: Tracing the evolution of criminal finances. Europol: European Union Agency for Law Enforcement Cooperation, The Hague, Netherlands. Available online: https://www.europol.europa.eu/publications-events/publications/cryptocurrencies-tracing-evolution-of-criminal-finances (accessed December 2025).
[6] Fanusie, Y. J., & Robinson, T. (2018). Bitcoin Laundering: An Analysis of Illicit Flows into Digital Currency Services. Center on Sanctions and Illicit Finance, 1-16.
[7] Bryans, D. (2014). Bitcoin and Money Laundering: Mining for an Effective Solution. Indiana Law Journal, 89(1), 441–472.
[8] Leukfeldt, E. R., & Yar, M. (2016). Applying Routine Activity Theory to Cybercrime: A Theoretical and Empirical Analysis. Deviant Behavior, 37(3), 263–280. doi:10.1080/01639625.2015.1012409.
[9] Williams, M. L. (2016). Guardians upon high: An application of routine activities theory to online identity theft in Europe at the country and individual level. British Journal of Criminology, 56(1), 21-48. doi:10.1093/bjc/azv011.
[10] Savona, E. U., & Riccardi, M. (Eds.). (2015). From illegal markets to legitimate businesses: The portfolio of organised crime in Europe. Transcrime – Università Cattolica del Sacro Cuore, Milan, Italy. doi:10.1285/i22390359v21p139.
[11] Chaikin, D., & Sharman, J. C. (2009). Corruption and money laundering: A symbiotic relationship. Palgrave Macmillan, New York, United States. doi:10.1057/9780230251144.
[12] van Duyne, P. C., Harvey, J. H., & Gelemerova, L. Y. (2018). The Critical Handbook of Money Laundering. The Critical Handbook of Money Laundering. Palgrave Macmillan, New York, United States. doi:10.1057/978-1-137-52398-3.
[13] Dwihayuni, Y. P., & Fauzi, A. M. (2021). The motive for the action of online gambling as an additional livelihood during social restrictions due to the Covid-19 pandemic. Jurnal Sosiologi Dialektika, 16(2), 108. doi:10.20473/jsd.v16i2.2021.108-116.
[14] Cohen, L. E., & Felson, M. (1979). Social Change and Crime Rate Trends: A Routine Activity Approach. American Sociological Review, 44(4), 588. doi:10.2307/2094589.
[15] Felson, M., & Boba, R. (2010). Crime and everyday life. In Crime and Everyday Life. SAGE Publications, New York, United States. doi:10.4135/9781483349299.
[16] Eck, John E.; Weisburd, D. (1994). Crime Places in Crime Theory. Crime and Place, 1–33.
[17] Grabosky, P. Virtual criminality: Old wine in new bottles? Social & Legal Studies, 10(2), 243–249. doi:10.1177/096466390101000101.
[18] Yar, M. (2005). The Novelty of ‘Cybercrime’: An Assessment in Light of Routine Activity Theory. European Journal of Criminology, 2(4), 407–427. doi:10.1177/147737080556056.
[19] Buil-Gil, D., Miró-Llinares, F., Moneva, A., Kemp, S., & Díez, C. (2023). Fear of economic cybercrime across Europe: A multilevel application of routine activity theory. The British Journal of Criminology, 63(2), 384-404. doi:10.1093/bjc/azac031.
[20] Yar, M. (2016). Guardians upon high: An application of routine activities theory to online identity theft in Europe at the country and individual level. The British Journal of Criminology, 56(1), 21-48. doi:10.1093/bjc/azv076.
[21] Levi, M., & Reuter, P. (2006). Money laundering. Crime and Justice, 34(1), 289–375. doi:10.1086/501508.
[22] Fiedler, I. (2022). Gambling and financial markets: A comparison from a regulatory perspective. Frontiers in Psychology, 13, 1038457. doi:10.3389/fpsyg.2022.1038457.
[23] Levi, M., & Soudijn, M. (2020). Understanding the laundering of organized crime money. Crime and Justice, 49(1), 579–631. doi:10.1086/708047.
[24] Sutrisni, K. N., & Sukranata, K. A. A. (2013). Pendekatan Follow the Money dalam Penelusuran Tindak Pidana Pencucian Uang serta Tindak Pidana Lain. Jurnal Hasil Riset, 1–5.
[25] Creswell, J. W., Cuevas, S., Greene, K., Santoyo, D., & Robinson, J. (2006). Qualitative inquiry and research design; Choosing Among Five Approaches. SAGE Publications, New York, United States.
[26] Yin, R. K. (2018). Case Study Research and Applications: Design and Methods. Sage Publications, Thousand Oaks, United States.
[27] Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage Publications, Thousand Oaks, United States.
[28] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. doi:10.1191/1478088706qp063oa.
[29] Cohen, S., Glaser, B. G., & Strauss, A. L. (1969). The Discovery of Grounded Theory: Strategies for Qualitative Research. The British Journal of Sociology, 20(2), 588533. doi:10.2307/588533.
[30] Deliema, M. (2018). Elder Fraud and Financial Exploitation: Application of Routine Activity Theory. Gerontologist, 58(4), 706–718. doi:10.1093/geront/gnw258.
[31] Oztas, B., Cetinkaya, D., Adedoyin, F., Budka, M., Aksu, G., & Dogan, H. (2024). Transaction monitoring in anti-money laundering: A qualitative analysis and points of view from industry. Future Generation Computer Systems, 159, 161-171. doi:10.1016/j.future.2024.04.023
[32] Liang, Y., Wu, W., Liang, R., Chen, Y., Lei, K., Zhong, G., ... & Huang, J. (2025). A plug-and-play data-driven approach for anti-money laundering in bitcoin. Expert Systems with Applications, 266, 126072. doi:10.1016/j.eswa.2024.126072.
[33] Aprilia, G. F. (2024). Exploring detection and prevention of money laundering with information technology. Journal of Money Laundering Control, 27(6), 995-1004. doi:10.1108/JMLC-08-2023-0138.
[34] Fan, J., Shar, L. K., Zhang, R., Liu, Z., Yang, W., Niyato, D., ... & Lam, K. Y. (2025). Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions. arXiv preprint arXiv:2503.10058.. doi:10.48550/arXiv.2503.10058.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















