Magnetic Contactless Crank-rocker Machine

Adnan Ishtay, Mohammad Awwad Al-Dabbas


Objective: In this paper, a proposed technique of motion transmission is introduced, which is based on the crank-rocker principle of motion. The energy transmission action is performed through magnetic force, in which no direct connection is made between the energy source input and the energy load output. Also, to illustrate the concept of motion and to approve the continuity of energy transmission using this proposed technique, a simple model of this mechanism has been built and run, showing the basic sequence of operation. Methodology/analysis: In this mechanical transmission mechanism, one side is rotating and the other side is vibrating, in which any side is energy input (which is usually the vibrating rocker), and the other side is energy output (which is the rotating crank). That seems similar to the classical crank-rocker machine in the four-bar mechanism, but without direct mechanical contact between the input and output energy stream. The concept of motion and mathematical analysis with structuring conditions is provided in this paper, where the dynamic analysis of the system is left for future work. A pilot physical prototype is manufactured and experimentally tested, validating the proposed design. Findings: The structural parameters of this proposed contactless crank-rocker machine have been modelled and simulated using the MATLAB program. It shows that these parameters could be selected and optimized to guarantee the minimum conditions for continued energy transmission. Based on these parameters, a simple model has been built and operated, which illustrates the concept of motion and validates the finding of MATLAB simulation. Novelty/improvement:Contactless crank-rocker motion is a very promising technique. It is possible to apply it in many applications, like the energy harvesting area, and it could be employed certainly in specific designs, such as MEMS, where no other motion transmission types can be used.


Doi: 10.28991/ESJ-2022-06-02-07

Full Text: PDF


Motion Transmission; Contactless Motion; Magnetic Force Applications; Energy Harvesting; Motor.


Vaka, R., & Keshri, R. K. (2017). Review on contactless power transfer for electric vehicle charging. Energies, 10(5), 636. doi:10.3390/en10050636.

Huang, L., Hu, A. P., Swain, A., Kim, S., & Ren, Y. (2013). An overview of capacitively coupled power transfer - A new contactless power transfer solution. Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA 2013, 461–465. doi:10.1109/ICIEA.2013.6566413.

Sahai, A., & Graham, D. (2011). Optical wireless power transmission at long wavelengths. 2011 International Conference on Space Optical Systems and Applications, ICSOS’11, 164–170. doi:10.1109/ICSOS.2011.5783662.

Eves, E. E. (1992). Beamed Microwave Power Transmission and its Application to Space. IEEE Transactions on Microwave Theory and Techniques, 40(6), 1239–1250. doi:10.1109/22.141357.

Norton, R.L. (2013). Kinematics and Dynamics of Machinery, Second edition, McGraw-Hill Higher Education, New York, USA.

Razek, A. (2021). Review of contactless energy transfer concept applied to inductive power transfer systems in electric vehicles. Applied Sciences (Switzerland), 11(7), 3221. doi:10.3390/app11073221.

Natesan, A. K. (1994). Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves. Master thesis, Rochester Institute of Technology, New York, United States. Available online: (accessed on December 2021).

Niarchos, D. (2003). Magnetic MEMS: Key issues and some applications. Sensors and Actuators, A: Physical, 109(1–2), 166–173. doi:10.1016/j.sna.2003.09.010.

Fang, L. H., Hassan, S. I. S., Abd Rahim, R. Bin, & Abd Malek, M. F. (2016). A study of vibration energy harvester. In ARPN Journal of Engineering and Applied Sciences 11(8), 5028–5041.

Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), 175– 195. doi:10.1088/0957-0233/17/12/R01.

Kim, P., & Seok, J. (2014). A multi-stable energy harvester: Dynamic modeling and bifurcation analysis. In Journal of Sound and Vibration, 333(21), 5525–5547. doi:10.1016/j.jsv.2014.05.054.

Vidal, J. V., Turutin, A. V., Kubasov, I. V., Kislyuk, A. M., Kiselev, D. A., Malinkovich, M. D., Parkhomenko, Y. N., Kobeleva, S. P., Sobolev, N. A., & Kholkin, A. L. (2020). Dual Vibration and Magnetic Energy Harvesting with Bidomain LiNbO3-Based Composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(6), 1219–1229. doi:10.1109/TUFFC.2020.2967842.

Fu, H., Theodossiades, S., Gunn, B., Abdallah, I., & Chatzi, E. (2020). Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator. Nonlinear Dynamics, 101(4), 2131–2143. doi:10.1007/s11071-020-05889-9.

Tri Nguyen, H., Genov, D. A., & Bardaweel, H. (2020). Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights. Applied Energy, 269. doi:10.1016/j.apenergy.2020.115102.

Redder, D. A. G., Brown, A. D., & Andrew Skinner, J. (1999). A contactless electrical energy transmission system. IEEE Transactions on Industrial Electronics, 46(1), 23–30. doi:10.1109/41.744372.

El-Refaie, A., Raminosoa, T., Reddy, P., Galioto, S., Pan, D., Grace, K., Alexander, J., & Huh, K. K. (2017). Comparison of traction motors that reduce or eliminate rare-earth materials. IET Electrical Systems in Transportation, 7(3), 207–214. doi:10.1049/iet-est.2016.0068.

Woo, K. Il, Park, H. S., Cho, Y. H., & Kim, K. H. (2005). Contactless energy transmission system for linear servo motor. IEEE Transactions on Magnetics, 41(5), 1596–1599. doi:10.1109/TMAG.2005.845025.

Komiyama, H., & Uchimura, Y. (2013). Contactless magnetic gear for robot control application. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 184(4), 32–41. doi:10.1002/eej.22414.

Tilli, A., Bosso, A., Conficoni, C., & Hashemi, A. (2017). Integrated Control of Motion and Contactless Power Transfer for Doubly-Fed Induction Machines in Complex Rotary Apparatuses. IFAC-PapersOnLine, 50(1), 13129–13135. doi:10.1016/j.ifacol.2017.08.2166.

Mohammed, S. E., Baharom, M. B., Rashid Aziz, A. A., & Zainal, E. Z. Z. (2019). Modelling of combustion characteristics of a single curved-cylinder spark-ignition crank-rocker engine. Energies, 12(17), 3313. doi:10.3390/en12173313.

Koo, D. H., Hong, P. J., Cho, Y. H., & Chung, K. S. (2002). Design and simulation of a contactless power transimission system. Automotive Electrical Equipment Optimization of Electronic Equipment, 377-382.

Sang, Y., Karayaka, H. B., Yan, Y., Zhang, J. Z., Muljadi, E., & Yu, Y. H. (2016). Energy extraction from a slider-crank wave energy converter under irregular wave conditions. Oceans 2015, 1–7. MTS/IEEE Washington, United States. doi:10.23919/oceans.2015.7401873.

Boeij, de, J. (2009). Multi-level contactless motion system. Technische Universiteit Eindhoven. Dissertations, Doctor of Philosophy, Eindhoven, Netherlands. doi:10.6100/IR640039.

Hirano, Y., Kushida, D., & Matsumoto, H. (2018). Contactless motion analysis system using a kinect and musculoskeletal model. 2017 IEEE Life Sciences Conference, LSC 2017, 2018-January, 308–311. doi:10.1109/LSC.2017.8268204.

Chen, J., & Wang, Z. L. (2017). Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 1(3), 480–521. doi:10.1016/j.joule.2017.09.004.

Hadas, Z., Vetiska, V., Singule, V., Andrs, O., Kovar, J., & Vetiska, J. (2012). Energy harvesting from mechanical shocks using a sensitive vibration energy harvester. International Journal of Advanced Robotic Systems, 9. doi:10.5772/53948.

Kodama, K. (2009). A simple demonstration of a general rule for the variation of magnetic field with distance. Physics Education, 44(3), 276–280. doi:10.1088/0031-9120/44/3/007.

Rantz, R., & Roundy, S. (2019). Characterization of Real-world Vibration Sources and Application to Nonlinear Vibration Energy Harvesters. Energy Harvesting and Systems, 4(2), 67–76. doi:10.1515/ehs-2016-0021.

Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. P., & Lang, J. H. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76. doi:10.1109/92.920820.

Dauksevicius, R., Briand, D., Lockhart, R., Vásquez Quintero, A., De Rooij, N., Gaidys, R., & Ostasevicius, V. (2014). Frequency up-converting vibration energy harvester with multiple impacting beams for enhanced wideband operation at low frequencies. In Procedia Engineering, 87, 1517–1520. doi:10.1016/j.proeng.2014.11.587.

Gunn, B., Alevras, P., Flint, J. A., Fu, H., Rothberg, S. J., & Theodossiades, S. (2021). A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains. Applied Energy, 302. doi:10.1016/j.apenergy.2021.117479.

Zou, D., Liu, G., Rao, Z., Tan, T., Zhang, W., & Liao, W. H. (2021). A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 147. doi:10.1016/j.ymssp.2020.107101.

Yang, T., Zhou, S., Fang, S., Qin, W., & Inman, D. J. (2021). Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews, 8(3), 31317. doi:10.1063/5.0051432.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-02-07


  • There are currently no refbacks.

Copyright (c) 2022 mohd aldabbas, adnan ieee