A Framework to Create a Deep Learning Detector from a Small Dataset: A Case of Parawood Pith Estimation
Abstract
Doi: 10.28991/ESJ-2023-07-01-017
Full Text: PDF
Keywords
References
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001. doi:10.1109/cvpr.2001.990517.
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision. doi:10.1109/iccv.1999.790410.
Dalal, N., & Triggs, B. (n.d.). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). doi:10.1109/cvpr.2005.177.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. Lecture Notes in Computer Science, 21–37. doi:10.1007/978-3-319-46448-0_2.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.91.
Hwang, J. J., Jung, Y. H., Cho, B. H., & Heo, M. S. (2019). An overview of deep learning in the field of dentistry. Imaging Science in Dentistry, 49(1), 1–7. doi:10.5624/isd.2019.49.1.1.
Pasupa, K., & Sunhem, W. (2016). A comparison between shallow and deep architecture classifiers on small dataset. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE). doi:10.1109/iciteed.2016.7863293.
Wang, J., & Perez, L. (2017). The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis. Recognit, 11, 1-8.
Yang, J., Xie, Y., Liu, L., Xia, B., Cao, Z., & Guo, C. (2018). Automated Dental Image Analysis by Deep Learning on Small Dataset. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 492-497. doi:10.1109/compsac.2018.00076.
Bae, H. J., Kim, C. W., Kim, N., Park, B. H., Kim, N., Seo, J. B., & Lee, S. M. (2018). A Perlin Noise-Based Augmentation Strategy for Deep Learning with Small Data Samples of HRCT Images. Scientific Reports, 8(1), 1–7. doi:10.1038/s41598-018-36047-2.
Oh, Y., Park, S., & Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688–2700. doi:10.1109/TMI.2020.2993291.
Ausawalaithong, W., Thirach, A., Marukatat, S., & Wilaiprasitporn, T. (2018). Automatic Lung Cancer Prediction from Chest X-ray Images Using the Deep Learning Approach. 2018 11th Biomedical Engineering International Conference (BMEiCON). doi:10.1109/bmeicon.2018.8609997.
Feng, S., Zhou, H., & Dong, H. (2019). Using deep neural network with small dataset to predict material defects. Materials & Design, 162, 300–310. doi:10.1016/j.matdes.2018.11.060.
Barz, B., & Denzler, J. (2020). Deep Learning on Small Datasets without Pre-Training using Cosine Loss. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv45572.2020.9093286.
Rajpurkar, P., Park, A., Irvin, J., Chute, C., Bereket, M., Mastrodicasa, D., Langlotz, C. P., Lungren, M. P., Ng, A. Y., & Patel, B. N. (2020). AppendiXNet: Deep Learning for Diagnosis of Appendicitis from a Small Dataset of CT Exams Using Video Pretraining. Scientific Reports, 10(1). doi:10.1038/s41598-020-61055-6.
Brigato, L., & Iocchi, L. (2021). A Close Look at Deep Learning with Small Data. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2490-2497. doi:10.1109/icpr48806.2021.9412492.
Huang, Y., Jing, J., & Wang, Z. (2021). Fabric Defect Segmentation Method Based on Deep Learning. IEEE Transactions on Instrumentation and Measurement, 70, 1–15. doi:10.1109/tim.2020.3047190.
Jing, J., Wang, Z., Rätsch, M., & Zhang, H. (2022). Mobile-Unet: An efficient convolutional neural network for fabric defect detection. Textile Research Journal, 92(1–2), 30–42. doi:10.1177/0040517520928604.
Ajmi, C., Zapata, J., Martínez-Álvarez, J. J., Doménech, G., & Ruiz, R. (2020). Using Deep Learning for Defect Classification on a Small Weld X-ray Image Dataset. Journal of Nondestructive Evaluation, 39(3), 1–13. doi:10.1007/s10921-020-00719-9.
Ju, J., Zheng, H., Xu, X., Guo, Z., Zheng, Z., & Lin, M. (2022). Classification of jujube defects in small data sets based on transfer learning. Neural Computing and Applications, 34(5), 3385–3398. doi:10.1007/s00521-021-05715-2.
DOI: 10.28991/ESJ-2023-07-01-017
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wattanapong Kurdthongmee