Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites

Alexey V. Nistratov, Natalya N. Klimenko, Igor V. Pustynnikov, Long Kim Vu

Abstract


This article aims to develop a method for regenerating and reusing carbon and glass fibers extracted from unrecyclable scraps of carbon plastics, printer parts, and laminating coating. A comparison of known methods of fiber regeneration revealed the advantages of thermal treatment: absence of costs of reagents and complex equipment; better preservation of composition; and strength of fibers. Based on the results of thermographic analysis of wastes in nitrogen and air, the destruction temperatures of their organic matrices were determined (200-460°С), and the use of calcination instead of pyrolysis was justified. The appearance and surface quality of the regenerated fibers are characterized by optical and electron microscopy. It has been established that quantitative extraction of pure carbon and glass fibers from waste crushed to 1 cm is efficient by their calcination at 700 °C for 0.5 h and 500 °C for 1 h, respectively. The principle of creating new composites with the obtained fibers based on the similarity of their composition and binding materials (matrices) has been proposed. It was shown that the introduction of 1 wt% of fibers into slag blocks and active carbon pellets considerably increases their compressive strength, but the bending strength does not change due to dispersed reinforcement. Possible improvement of mechanical properties of products requires reagent treatment of the fiber surface or the introduction of binder additives. Calculations show that the developed method of recycling composite waste can produce 2.3 tons/hour of reinforced building materials that are good for the environment and the economy, excluding expenses for landfill waste disposal and reducing the cost of the product by replacing the primary fiber for the secondary one.

 

Doi: 10.28991/ESJ-2022-06-05-04

Full Text: PDF


Keywords


Carbon Fiber (CF); Glass Fiber (GF); Waste; Polymer Composite Material (PCM); Regeneration; Calcination.

References


Infomine (2020) Review of the market of carbon fiber in the world and the CIS: Production, Market and forecast (2nd Ed.) Available online: http://eng.infomine.ru/research/32/536 (accessed on February 2022). (In Russian).

Tarasov, Y. (2017). Will composites be able to change the technological mode?. Forbes. Available online: https://www.forbes.ru/tehnologii/336341-belymi-nitkami-smogut-li-kompozity-pomenyat-tehnologicheskiy-uklad (accessed on February 2022).

Shaik, S., Nundy, S., Maduru, V. R., Ghosh, A., & Afzal, A. (2022). Polymer dispersed liquid crystal retrofitted smart switchable glazing: Energy saving, diurnal illumination, and CO2 mitigation prospective. Journal of Cleaner Production, 350, 131444. doi:10.1016/j.jclepro.2022.131444

Vinod, A., Yashas Gowda, T. G., Vijay, R., Sanjay, M. R., Gupta, M. K., Jamil, M., … Siengchin, S. (2021). Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: A sustainable and green material for cleaner production. Journal of Cleaner Production, 294, 126337. doi:10.1016/j.jclepro.2021.126337.

Pramanik, A., Basak, A. K., Dong, Y., Sarker, P. K., Uddin, M. S., Littlefair, G., … Chattopadhyaya, S. (2017). Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Composites Part A: Applied Science and Manufacturing, 101, 1–29. doi:10.1016/j.compositesa.2017.06.007.

Geier, N., Davim, J. P., & Szalay, T. (2019). Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing, 125. doi:10.1016/j.compositesa.2019.105552.

Naresh, K., Shankar, K., Velmurugan, R., & Gupta, N. K. (2018). Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites. Thin-Walled Structures, 126, 150–161. doi:10.1016/j.tws.2016.12.021.

Soutis, C. (2019). Aerospace engineering requirements in building with composites. Polymer Composites in the Aerospace Industry, 3–22, Woodhead Publishing Series in Composite Science and Engineering, Sawston, United Kingdom. doi:10.1016/B978-0-08-102679-3.00001-0.

Gutiérrez, E., & Bono, F. (2013). Review of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in Shipping Containers: approximate cost, production methods and market drivers. Joint Research Centre, publication Office of the European Union, Luxembourg City, Luxembourg. doi:10.2788/77853.

Holmes, M. (2013). Carbon fibre reinforced plastics market continues growth path. Reinforced Plastics, 57(6), 24–29. doi:10.1016/s0034-3617(13)70186-3.

Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science, 5(1), 28. doi:10.3390/jcs5010028

Karuppannan Gopalraj, S., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(3), 433. doi:10.1007/s42452-020-2195-4.

Witik, R. A., Teuscher, R., Michaud, V., Ludwig, C., & Månson, J. A. E. (2013). Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling. Composites Part A: Applied Science and Manufacturing, 49, 89–99. doi:10.1016/j.compositesa.2013.02.009.

Asmatulu, E., Twomey, J., & Overcash, M. (2014). Recycling of fiber-reinforced composites and direct structural composite recycling concept. Journal of Composite Materials, 48(5), 593–608. doi:10.1177/0021998313476325.

Wood, K. (2010). Carbon fiber reclamation: going commercial. High performance composites, 3, 1-2. Available online: https://www.compositesworld.com/articles/carbon-fiber-reclamation-going-commercial (accessed on May 2022).

Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing. Scientific American, 261(3), 144–152. doi:10.1038/scientificamerican0989-144.

Asmatulu, E., Overcash, M., & Twomey, J. (2013). Recycling of Aircraft: State of the Art in 2011. Journal of Industrial Engineering, 2013, 1–8. doi:10.1155/2013/960581.

Feldhusen, J., Pollmanns, J., & Heller, J. E. (2011). End of life strategies in the aviation industry. Glocalized Solutions for Sustainability in Manufacturing, 459–464, Springer, Berlin, Germany. doi:10.1007/978-3-642-19692-8_79.

Marsh, G. (2009). Carbon recycling: a soluble problem. Reinforced Plastics, 53(4), 22–27. doi:10.1016/s0034-3617(09)70149-3.

Tapper, R. J., Longana, M. L., Norton, A., Potter, K. D., & Hamerton, I. (2020). An evaluation of life cycle assessment and its application to the closed-loop recycling of carbon fibre reinforced polymers. Composites Part B: Engineering, 184. doi:10.1016/j.compositesb.2019.107665.

Howarth, J., Mareddy, S. S. R., & Mativenga, P. T. (2014). Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. Journal of Cleaner Production, 81, 46–50. doi:10.1016/j.jclepro.2014.06.023.

Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. doi:10.1016/j.pmatsci.2015.01.004.

Amaechi, C. V., Agbomerie, C. O., Orok, E. O., & Ye, J. (2020). Economic Aspects of Fiber Reinforced Polymer Composite Recycling. Encyclopedia of Renewable and Sustainable Materials, 377–397. doi:10.1016/b978-0-12-803581-8.10738-6.

Bernatas, R., Dagreou, S., Despax-Ferreres, A., & Barasinski, A. (2021). Recycling of fiber reinforced composites with a focus on thermoplastic composites. Cleaner Engineering and Technology, 5. doi:10.1016/j.clet.2021.100272.

Butenegro, J. A., Bahrami, M., Abenojar, J., & Martínez, M. Á. (2021). Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials, 14(21), 6401. doi:10.3390/ma14216401.

Khrulkov, A. V., Gusev, Yu. A., Mishkin, S. I., and Doriomedov, M. S. (2016). Efficiency of composites recycling. Novosti Materialovedeniya, Nauka i Tekhnika. Nauka i Tekhnika, 6, 69–74.

Al-Shaeli, M., Al-Juboori, R. A., Al Aani, S., Ladewig, B. P., & Hilal, N. (2022). Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. Science of The Total Environment, 838, 156014. doi:10.1016/j.scitotenv.2022.156014.

Protsenko, A.E., Pimenova, E. & Petrov, V., 2020. Recycling of glass fibers sheets from thermoset reinforced plastic using thermolysis method. IOP Conference Series: Materials Science and Engineering, 734(1), p.012185. Available at: http://dx.doi.org/10.1088/1757-899x/734/1/012185.

Khurshid, M. F., Hillerbrand, M., Abdkader, A., & Cherif, C. (2020). Processing of waste carbon and polyamide fibers for high-performance thermoplastic composites: Modifications to the auto-leveling system to enhance the quality of hybrid drawn sliver. Journal of Industrial Textiles. doi:10.1177/1528083720913530.

Pietroluongo, M., Padovano, E., Frache, A., & Badini, C. (2020). Mechanical recycling of an end-of-life automotive composite component. Sustainable Materials and Technologies, 23. doi:10.1016/j.susmat.2019.e00143.

Piñero-Hernanz, R., Dodds, C., Hyde, J., García-Serna, J., Poliakoff, M., Lester, E., … Wong, K. H. (2008). Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A: Applied Science and Manufacturing, 39(3), 454–461. doi:10.1016/j.compositesa.2008.01.001.

Okajima, I., Hiramatsu, M., Shimamura, Y., Awaya, T., & Sako, T. (2014). Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. Journal of Supercritical Fluids, 91, 68–76. doi:10.1016/j.supflu.2014.04.011.

Pico, D., Seide, G., & Gries, T. (2014). Thermo chemical processes: Potential improvement of the wind blades life cycle. Chemical Engineering Transactions, 36, 211–216. doi:10.3303/CET1436036.

Piñero-Hernanz, R., García-Serna, J., Dodds, C., Hyde, J., Poliakoff, M., Cocero, M. J., Kingman, S., Pickering, S., & Lester, E. (2008). Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. Journal of Supercritical Fluids, 46(1), 83–92. doi:10.1016/j.supflu.2008.02.008.

Hitachi Chemical Working on Wonders. (2014). Hitachi Chemical technical report. Hitachi Chemical Technical Report No. 56. Available online: https://www.mc.showadenko.com/english/report/056/56.pdf (accessed on April 2022).

Zhang, N., Hou, X., Cui, X., Chai, L., Li, H., Zhang, H., … Deng, T. (2021). Amphiphilic catalyst for decomposition of unsaturated polyester resins to valuable chemicals with 100% atom utilization efficiency. Journal of Cleaner Production, 296, 126492. doi:10.1016/j.jclepro.2021.126492.

Allred, R. E., & Salas, R. M. (2011). Recycling Process for Aircraft plastics and Composites. Defense Technical Information Center, ADA305806. Available online: https://apps.dtic.mil/sti/citations/ADA305806 (accessed on May 2022).

Yu, K., Shi, Q., Dunn, M. L., Wang, T., & Qi, H. J. (2016). Carbon Fiber Reinforced Thermoset Composite with Near 100% Recyclability. Advanced Functional Materials, 26(33), 6098–6106. doi:10.1002/adfm.201602056.

Sokoli, H. U., Beauson, J., Simonsen, M. E., Fraisse, A., Brøndsted, P., & Søgaard, E. G. (2017). Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids. The Journal of Supercritical Fluids, 124, 80–89. doi:10.1016/j.supflu.2017.01.013.

Shaydurova, G. I., Shevyakov, Y. S., Vasiliev, I. L., Gatina, E. R., … Kulikova, Y. V. (2018). Assessment of the possibility of carbon fiber composite recycling using chemical methods. Proceedings of universities applied chemistry and biotechnology, 8(3), 135–140. doi:10.21285/2227-2925-2018-8-3-135-140.

Oshima, K., Matsuda, S., Hosaka, M., & Satokawa, S. (2020). Rapid removal of resin from a unidirectional carbon fiber reinforced plastic laminate by a high-voltage electrical treatment. Separation and Purification Technology, 231, 115885. doi:10.1016/j.seppur.2019.115885.

Meyer, L. O., Schulte, K., & Grove-Nielsen, E. (2009). CFRP-recycling following a pyrolysis route: Process optimization and potentials. Journal of Composite Materials, 43(9), 1121–1132. doi:10.1177/0021998308097737.

Naqvi, S. R., Prabhakara, H. M., Bramer, E. A., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation and Recycling, 136, 118–129. doi:10.1016/j.resconrec.2018.04.013.

Thomason, J. L., Nagel, U., Yang, L., & Sáez, E. (2016). Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxide. Composites Part A: Applied Science and Manufacturing, 87, 220–227. doi:10.1016/j.compositesa.2016.05.003.

Yang, L., Sáez, E. R., Nagel, U., & Thomason, J. L. (2015). Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites? Composites Part A: Applied Science and Manufacturing, 72, 167–174. doi:10.1016/j.compositesa.2015.01.030.

Onwudili, J. A., Miskolczi, N., Nagy, T., & Lipóczi, G. (2016). Recovery of glass fibre and carbon fibres from reinforced thermosets by batch pyrolysis and investigation of fibre re-using as reinforcement in LDPE matrix. Composites Part B: Engineering, 91, 154–161. doi:10.1016/j.compositesb.2016.01.055.

Matsuda, S., Oshima, K., Hosaka, M., & Satokawa, S. (2020). Effect of annealing on the separation of resin from CFRP cross-ply laminate via electrical treatment. Composite Structures, 234. doi:10.1016/j.compstruct.2019.111665.

Russian Agency for Patents and Trademarks. (2003). Composite waste pyrolyzer: RF Patent 2208203. Available online: https://patentimages.storage.googleapis.com/7b/a7/4a/72465dec2c237b/RU2208203C2.pdf (accessed on May 2022). (In Russian).

Klimenko, N. N., Nistratov, A. V., Kiseleva, K. I., Delitsyn, L. M., & Sigaev, V. N. (2021). Application of Secondary Carbon Fiber for Reinforcing Composite Material Based on Alkali-Activated Blast-Furnace Slag. Glass and Ceramics, 77(11-12), 429–431. doi:10.1007/s10717-021-00324-w.

Klushin, V. N., Mukhin, V. M., Long, W. K., & Nistratov, A. V. (2019). Method of production of activated carbon. Patent of the Russian Federation No. 2700067. Available online: https://findpatent.ru/patent/270/2700067.html (accessed on July 2022). (In Russian).

Meyer, L. O., Schulte, K., & Grove-Nielsen, E. (2009). CFRP-recycling following a pyrolysis route: Process optimization and potentials. Journal of Composite Materials, 43(9), 1121–1132. doi:10.1177/0021998308097737.

Pickering, S. J., Kelly, R. M., Kennerley, J. R., Rudd, C. D., & Fenwick, N. J. (2000). A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Composites Science and Technology, 60(4), 509–523. doi:10.1016/s0266-3538(99)00154-2.

López, F. A., Martín, M. I., Alguacil, F. J., Rincón, J. M., Centeno, T. A., & Romero, M. (2012). Thermolysis of fibreglass polyester composite and reutilisation of the glass fibre residue to obtain a glass-ceramic material. Journal of Analytical and Applied Pyrolysis, 93, 104–112. doi:10.1016/j.jaap.2011.10.003.

Mukhin, V. M., & Klushin, V. N. (2012). Production and application of carbon adsorbents. Russian University of Chemical Technology named after D. Mendeleev (RCTU) Federal State Budgetary Educational Institution of Higher Education, Moscow, Russia.

Makarov, S.V., Kuznetsov, O., Ermolenko, B.V., & Butylin, V. V. (2011). Industrial Ecology. Russian Chemical Technology University Publishing Center, Moscow, Russia. (In Russian).


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Alexey Viktorovich Nistratov