Application of Machine Learning Methods for Asset Management on Power Distribution Networks

Gopal lal Rajora, Miguel A. Sanz-Bobi, Carlos Mateo Domingo


This study aims to study the different kinds of Machine Learning (ML) models and their working principles for asset management in power networks. Also, it investigates the challenges behind asset management and its maintenance activities. In this review article, Machine Learning (ML) models are analyzed to improve the lifespan of the electrical components based on the maintenance management and assessment planning policies. The articles are categorized according to their purpose: 1) classification, 2) machine learning, and 3) artificial intelligence mechanisms. Moreover, the importance of using ML models for proper decision making based on the asset management plan is illustrated in a detailed manner. In addition to this, a comparative analysis between the ML models is performed, identifying the advantages and disadvantages of these techniques. Then, the challenges and managing operations of the asset management strategies are discussed based on the technical and economic factors. The proper functioning, maintenance and controlling operations of the electric components are key challenging and demanding tasks in the power distribution systems. Typically, asset management plays an essential role in determining the quality and profitability of the elements in the power network. Based on this investigation, the most suitable and optimal machine learning technique can be identified and used for future work.


Doi: 10.28991/ESJ-2022-06-04-017

Full Text: PDF


Asset Management; Power Distribution Network; Machine Learning (ML) Techniques; Power Systems; Time-Based; Activity-Based; Artificial Intelligence (AI) Models.


Heydt, G. T. (2010). The next generation of power distribution systems. IEEE Transactions on Smart Grid, 1(3), 225–235. doi:10.1109/TSG.2010.2080328.

Johal, H., Ren, W., Pan, Y., & Krok, M. (2010). An integrated approach for controlling and optimizing the operation of a power distribution system. IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe, 1–7. doi:10.1109/ISGTEUROPE.2010.5638859.

Northcote-Green, J., & Wilson, R. (2017). Control and automation of electrical power distribution systems. CRC Press, Boca Raton, United States. doi:10.1201/9781315221465.

Tor, O., & Shahidehpour, M. (2006). Power distribution asset management. 2006 IEEE Power Engineering Society General Meeting, PES, 7. doi:10.1109/pes.2006.1709234.

Georgilakis, P. S., & Hatziargyriou, N. D. (2015). A review of power distribution planning in the modern power systems era: Models, methods and future research. Electric Power Systems Research, 121, 89–100. doi:10.1016/j.epsr.2014.12.010.

Shiota, A., Fuchino, G., Koyamatsu, Y., Kakumoto, Y., Tanoue, K., Qudaih, Y., & Mitani, Y. (2016). Guide Construction of an Efficient Inspection, Maintenance and Asset Management of Photovoltaic Power Generation System Using GIS. Energy Procedia, 100, 69–77. doi:10.1016/j.egypro.2016.10.133.

Opathella, C., Elkasrawy, A., Adel Mohamed, A., & Venkatesh, B. (2020). MILP formulation for generation and storage asset sizing and sitting for reliability constrained system planning. International Journal of Electrical Power & Energy Systems, 116, 105529. doi:10.1016/j.ijepes.2019.105529.

Li, N., Wang, X., Li, C., Zhang, Z., & Zhang, W. (2020). The overhauls technical innovation project optimization method of power grid device based on Life Cycle Asset Management. Energy Reports, 6, 1249–1254. doi:10.1016/j.egyr.2020.11.047.

Petchrompo, S., & Parlikad, A. K. (2019). A review of asset management literature on multi-asset systems. Reliability Engineering and System Safety, 181, 181–201. doi:10.1016/j.ress.2018.09.009.

Martínez-Galán, P., Crespo, A., de la Fuente, A., & Guillén, A. (2020). A new model to compare intelligent asset management platforms (IAMP). IFAC-PapersOnLine, 53(3), 13–18. doi:10.1016/j.ifacol.2020.11.003.

Soni, R., & Mehta, B. (2021). Review on asset management of power transformer by diagnosing incipient faults and faults identification using various testing methodologies. Engineering Failure Analysis, 128, 105634. doi:10.1016/j.engfailanal.2021.105634.

Koziel, S., Hilber, P., Westerlund, P., & Shayesteh, E. (2021). Investments in data quality: Evaluating impacts of faulty data on asset management in power systems. Applied Energy, 281, 116057. doi:10.1016/j.apenergy.2020.116057.

Martínez-Galán, P., Crespo, A., de la Fuente, A., & Guillén, A. (2020). A new model to compare intelligent asset management platforms (IAMP). IFAC-PapersOnLine, 53(3), 13–18. doi:10.1016/j.ifacol.2020.11.003.

Guittet, M., Capezzali, M., Gaudard, L., Romerio, F., Vuille, F., & Avellan, F. (2016). Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective. Energy, 111, 560–579. doi:10.1016/

Napoleone, A., Roda, I., & Macchi, M. (2016). The implications of condition monitoring on asset-related decision-making in the Italian power distribution sector. IFAC-PapersOnLine, 49(28), 108–113. doi:10.1016/j.ifacol.2016.11.019.

Spüntrup, F. S., & Imsland, L. (2018). Asset fleet management in the process industry - a conceptual model. IFAC-PapersOnLine, 51(18), 281–286. doi:10.1016/j.ifacol.2018.09.313.

Mirhosseini, M., & Keynia, F. (2021). Asset management and maintenance programming for power distribution systems: A review. IET Generation, Transmission and Distribution, 15(16), 2287–2297. doi:10.1049/gtd2.12177.

Aremu, O. O., Palau, A. S., Parlikad, A. K., Hyland-Wood, D., & McAree, P. R. (2018). Structuring Data for Intelligent Predictive Maintenance in Asset Management. IFAC-PapersOnLine, 51(11), 514–519. doi:10.1016/j.ifacol.2018.08.370.

Abiri-Jahromi, A., Parvania, M., Bouffard, F., & Fotuhi-Firuzabad, M. (2013). A Two-stage framework for power transformer asset maintenance management - Part I: Models and formulations. IEEE Transactions on Power Systems, 28(2), 1395–1403. doi:10.1109/TPWRS.2012.2216903.

Forouhari, S., & Abu-Siada, A. (2018). Application of adaptive neuro fuzzy inference system to support power transformer life estimation and asset management decision. IEEE Transactions on Dielectrics and Electrical Insulation, 25(3), 845–852. doi:10.1109/TDEI.2018.006392.

Gavrikova, E., Volkova, I., & Burda, Y. (2020). Strategic aspects of asset management: An overview of current research. Sustainability (Switzerland), 12(15), 5955. doi:10.3390/su12155955.

Goforth, E., El-Dakhakhni, W., & Wiebe, L. (2022). Step Through the Noise: Insight into Resilience-Driven Power Asset Management. Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021, 345–349. doi:10.1007/978-981-19-0507-0_32.

Foros, J., & Istad, M. (2020). Health Index, Risk and Remaining Lifetime Estimation of Power Transformers. IEEE Transactions on Power Delivery, 35(6), 2612–2620. doi:10.1109/TPWRD.2020.2972976.

Katina, P. F., Pyne, J. C., Keating, C. B., & Komljenovic, D. (2021). Complex system governance as a framework for asset management. Sustainability (Switzerland), 13(15). doi:10.3390/su13158502.

Bartram, S. M., Branke, J., & Motahari, M. (2020). Artificial Intelligence in Asset Management. SSRN Electronic Journal. doi:10.2139/ssrn.3692805.

Ayu, K., & Yunusa-Kaltungo, A. (2020). A holistic framework for supporting maintenance and asset management life cycle decisions for power systems. Energies, 13(8), 1937. doi:10.3390/en13081937.

Dehghanian, P., Fotuhi-Firuzabad, M., Bagheri-Shouraki, S., & Razi Kazemi, A. A. (2012). Critical component identification in reliability centered asset management of power distribution systems via fuzzy AHP. IEEE Systems Journal, 6(4), 593–602. doi:10.1109/JSYST.2011.2177134.

Abu-Elanien, A. E. B., & Salama, M. M. A. (2010). Asset management techniques for transformers. Electric Power Systems Research, 80(4), 456–464. doi:10.1016/j.epsr.2009.10.008.

Koksal, A., & Ozdemir, A. (2016). Improved transformer maintenance plan for reliability centred asset management of power transmission system. IET Generation, Transmission and Distribution, 10(8), 1976–1983. doi:10.1049/iet-gtd.2015.1286.

Martins, M. A. (2014). Condition and risk assessment of power transformers: A general approach to calculate a Health Index. Ciencia e Tecnologia Dos Materiais, 26(1), 9–16. doi:10.1016/j.ctmat.2014.09.002.

Rui, Y., Hu, Z., Qian, S., Li, Y., Wei, R., & Tang, Q. (2019). Research on Asset Management of Power Grid Engineering Based on Asset Group. IOP Conference Series: Materials Science and Engineering, 688(5), 055063. doi:10.1088/1757-899X/688/5/055063.

Khuntia, S. R., Rueda, J. L., Bouwman, S., & van der Meijden, M. A. M. M. (2016). A literature survey on asset management in electrical power [transmission and distribution] system. International Transactions on Electrical Energy Systems, 26(10), 2123–2133. doi:10.1002/etep.2193.

Alimi, O. A., Ouahada, K., & Abu-Mahfouz, A. M. (2020). A Review of Machine Learning Approaches to Power System Security and Stability. IEEE Access, 8, 113512–113531. doi:10.1109/ACCESS.2020.3003568.

Miraftabzadeh, S. M., Foiadelli, F., Longo, M., & Pasetti, M. (2019). A Survey of Machine Learning Applications for Power System Analytics. Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019, 1–5. doi:10.1109/EEEIC.2019.8783340.

Cheng, L., & Yu, T. (2019). A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. International Journal of Energy Research, 43(6), 1928–1973. doi:10.1002/er.4333.

Yang, X., Chen, W., Li, A., Yang, C., Xie, Z., & Dong, H. (2019). BA-PNN-based methods for power transformer fault diagnosis. Advanced Engineering Informatics, 39, 178–185. doi:10.1016/j.aei.2019.01.001.

Dong, M., Li, W., & Nassif, A. B. (2022). Long-Term Health Index Prediction for Power Asset Classes Based on Sequence Learning. IEEE Transactions on Power Delivery, 37(1), 197–207. doi:10.1109/TPWRD.2021.3055622.

Aminifar, F., Abedini, M., Amraee, T., Jafarian, P., Samimi, M. H., & Shahidehpour, M. (2021). A review of power system protection and asset management with machine learning techniques. Energy Systems, 1–38,. doi:10.1007/s12667-021-00448-6.

Wang, T., He, Y., Li, B., & Shi, T. (2018). Transformer fault diagnosis using self-powered RFID sensor and deep learning approach. IEEE Sensors Journal, 18(15), 6399–6411. doi:10.1109/JSEN.2018.2844799.

Mlakić, D., Nikolovski, S., & Majdandžić, L. (2018). Deep learning method and infrared imaging as a tool for transformer faults detection. Journal of Electrical Engineering, 6(2), 98-106. doi:10.17265/2328-2223/2018.02.006.

Samnejad, M., Aboelatta, M., & Dung, C. V. (2021). Asset Inspection Powered by Computer Vision: The Use of Deep Neural Networks for Automating the Detection and Classification of Pipeline External Damage. PRCI Research Exchange, VREX 2021.

MehdipourPicha, H., Bo, R., Chen, H., Rana, M. M., Huang, J., & Hu, F. (2019). Transformer Fault Diagnosis Using Deep Neural Network. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). doi:10.1109/isgt-asia.2019.8881052.

Zhu, L., Hill, D. J., & Lu, C. (2020). Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction. IEEE Transactions on Power Systems, 35(3), 2399–2411. doi:10.1109/TPWRS.2019.2957377.

Salim, N. A., Jasni, J., Mohamad, H., & Mat Yasin, Z. (2021). Transformer health index prediction using feedforward neural network according to scoring and ranking method. International Journal of Advanced Technology and Engineering Exploration, 8(75), 292–303. doi:10.19101/IJATEE.2020.762125.

Zhao, R., Li, B., Guo, W., Lu, J., & Li, S. (2021). Research on Power Network Data Management Based on Convolutional Neural Network. Journal of Physics: Conference Series, 1748(3), 032061. doi:10.1088/1742-6596/1748/3/032061.

Naganathan, G. S., Senthilkumar, M., Aiswariya, S., Muthulakshmi, S., Santhiya Riyasen, G., & Mamtha Priyadharshini, M. (2021). Internal fault diagnosis of power transformer using artificial neural network. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.02.206.

Velasquez-Contreras, J. L., Sanz-Bobi, M. A., & Galceran Arellano, S. (2011). General asset management model in the context of an electric utility: Application to power transformers. Electric Power Systems Research, 81(11), 2015–2037. doi:10.1016/j.epsr.2011.06.007.

Afrasiabi, S., Afrasiabi, M., Parang, B., & Mohammadi, M. (2020). Integration of Accelerated Deep Neural Network into Power Transformer Differential Protection. IEEE Transactions on Industrial Informatics, 16(2), 865–876. doi:10.1109/TII.2019.2929744.

Trappey, A. J. C., Trappey, C. V., Ma, L., & Chang, J. C. M. (2015). Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions. Computers and Industrial Engineering, 84, 3–11. doi:10.1016/j.cie.2014.12.033.

Žarković, M. D., Stojković, Z. M., Shiljkut, V., Đorđević, M., & Tomašević, M. (2020). Power transformers asset management based on machine learning. The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020). doi:10.1049/icp.2021.1204.

Abu-Elanien, A. E. B., Salama, M. M. A., & Ibrahim, M. (2011). Determination of transformer health condition using artificial neural networks. 2011 International Symposium on Innovations in Intelligent Systems and Applications. doi:10.1109/inista.2011.5946173.

Bacha, K., Souahlia, S., & Gossa, M. (2012). Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric power systems research, 83(1), 73-79. doi:10.1016/j.epsr.2011.09.012.

Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2021). A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting. Annals of Data Science, 1–26,. doi:10.1007/s40745-021-00344-x.

Benhamou, E., Saltiel, D., Ungari, S., Atif, J., & Mukhopadhyay, A. (2021). AAMDRL: Augmented Asset Management With Deep Reinforcement Learning. SSRN Electronic Journal. doi:10.2139/ssrn.3702113.

Glavic, M., Fonteneau, R., & Ernst, D. (2017). Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives. IFAC-PapersOnLine, 50(1), 6918–6927. doi:10.1016/j.ifacol.2017.08.1217.

Lincoln, R., Galloway, S., Stephen, B., & Burt, G. (2012). Comparing policy gradient and value function based reinforcement learning methods in simulated electrical power trade. IEEE Transactions on Power Systems, 27(1), 373–380. doi:10.1109/TPWRS.2011.2166091.

Nyong-Bassey, B. E., Giaouris, D., Patsios, C., Papadopoulou, S., Papadopoulos, A. I., Walker, S., Voutetakis, S., Seferlis, P., & Gadoue, S. (2020). Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty. Energy, 193, 116622. doi:10.1016/

Rocchetta, R., Bellani, L., Compare, M., Zio, E., & Patelli, E. (2019). A reinforcement learning framework for optimal operation and maintenance of power grids. Applied Energy, 241, 291–301. doi:10.1016/j.apenergy.2019.03.027.

Ibrahim, M. S., Dong, W., & Yang, Q. (2020). Machine learning driven smart electric power systems: Current trends and new perspectives. Applied Energy, 272, 115237. doi:10.1016/j.apenergy.2020.115237.

Lu, J., Qian, W., Li, S., & Cui, R. (2021). Enhanced k-nearest neighbor for intelligent fault diagnosis of rotating machinery. Applied Sciences (Switzerland), 11(3), 1–15. doi:10.3390/app11030919.

Benhmed, K., Mooman, A., Younes, A., Shaban, K., & El-Hag, A. (2018). Feature selection for effective health index diagnoses of power transformers. IEEE Transactions on Power Delivery, 33(6), 3223–3226. doi:10.1109/TPWRD.2017.2762920.

Tanfilyeva, D. V., Tanfyev, O. V., & Kazantsev, Y. V. (2019). K-nearest neighbor method for power transformers condition assessment. IOP Conference Series: Materials Science and Engineering, 643(1), 012016. doi:10.1088/1757-899x/643/1/012016.

Balaraman, S., Madavan, R., Vedhanayaki, S., Saroja, S., Srinivasan, M., & Stonier, A. A. (2021). Fault Diagnosis and Asset Management of Power Transformer Using Adaptive Boost Machine Learning Algorithm. IOP Conference Series: Materials Science and Engineering, 1055(1), 012133. doi:10.1088/1757-899x/1055/1/012133.

Marie, I. A., Ariwibowo, A. B., Saraswati, D., & Witonohadi, A. Determination of failure risk for transformer system based on classification technique. Proceeding of 9th International Seminar on Industrial Engineering and Management, West Sumatra, Indonesia, September 20-22, 2016.

Alqudsi, A., & El-Hag, A. (2019). Application of machine learning in transformer health index prediction. Energies, 12(14), 2694. doi:10.3390/en12142694.

Da Silva, P. R. N., Gabbar, H. A., Vieira Junior, P., & Da Costa Junior, C. T. (2018). A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naïve Bayes classifier. International Journal of Electrical Power and Energy Systems, 103, 326–346. doi:10.1016/j.ijepes.2018.05.036.

Ng, S. S. Y., Xing, Y., & Tsui, K. L. (2014). A naive bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118, 114–123. doi:10.1016/j.apenergy.2013.12.020.

Wang, T., He, Y., Shi, T., Tong, J., & Li, B. (2019). Transformer Health Management Based on Self-Powered RFID Sensor and Multiple Kernel RVM. IEEE Transactions on Instrumentation and Measurement, 68(3), 818–828. doi:10.1109/TIM.2018.2851840.

Zhang, L., Liu, Z., Luo, D., Li, J., & Huang, H.-Z. (2013). Review of remaining useful life prediction using support vector machine for engineering assets. 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). doi:10.1109/qr2mse.2013.6625925.

Dong, M. (2019). Combining Unsupervised and Supervised Learning for Asset Class Failure Prediction in Power Systems. IEEE Transactions on Power Systems, 34(6), 5033–5043. doi:10.1109/TPWRS.2019.2920915.

Peng, X., Zhou, C., Hepburn, D., Judd, M. D., & Siew, W. H. (2013). Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring. IEEE Transactions on Dielectrics and Electrical Insulation, 20(3), 754–761. doi:10.1109/TDEI.2013.6518945.

Yan, L., Xin, Y., & Tang, W. (2015). Consensus clustering algorithms for Asset Management in power systems. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). doi:10.1109/drpt.2015.7432484.

Koksal, A., Ozdemir, A., & Ata, O. (2017). RCAM based maintenance plan of the power transformers using k-means clustering algorithm. 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, 1–6. doi:10.1109/ISAP.2017.8071391.

Mattioli, J., Perico, P., & Robic, P. O. (2020). Artificial Intelligence based Asset Management. SOSE 2020 - IEEE 15th International Conference of System of Systems Engineering, Proceedings, 151–156. doi:10.1109/SoSE50414.2020.9130505.

Ahnfelt, H. (2019, March). Expert Systems Delivering Efficiency and Cost Benefits in Asset Management. CORROSION 2019, March 24-28, 2019, Nashville, United States.

Žarković, M., & Stojković, Z. (2017). Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics. Electric Power Systems Research, 149, 125–136. doi:10.1016/j.epsr.2017.04.025.

Spatti, D. H., Liboni, L., Flauzino, R. A., Bossolan, R. P., & Vitti, B. C. (2019). Expert System for an Optimized Asset Management in Electric Power Transmission Systems. Journal of Control, Automation and Electrical Systems, 30(3), 434–440. doi:10.1007/s40313-019-00451-4.

Arshad, M., & Islam, S. M. (2006). A novel fuzzy logic technique for power transformer asset management. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 1, 276–286. doi:10.1109/IAS.2006.256536.

Yazdani, A., Shariati, S., & Yazdani-Chamzini, A. (2014). A risk assessment model based on fuzzy logic for electricity distribution system asset management. Decision Science Letters, 3(3), 343–352. doi:10.5267/j.dsl.2014.3.003.

Bakar, N. A., & Abu-Siada, A. (2016). Fuzzy logic approach for transformer remnant life prediction and asset management decision. IEEE Transactions on Dielectrics and Electrical Insulation, 23(5), 3199–3208. doi:10.1109/TDEI.2016.7736886.

Bangalore, P., & Tjernberg, L. B. (2015). An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6(2), 980–987. doi:10.1109/TSG.2014.2386305.

Abu-Siada, A., & Islam, S. (2012). A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 19(3), 1007–1012. doi:10.1109/TDEI.2012.6215106.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-04-017


  • There are currently no refbacks.

Copyright (c) 2022 Gopal lal Rajora, Miguel A. Sanz-Bobi, Carlos Mateo Domingo