Turning Pirates into Subscribers: A Status Quo Bias Perspective on Online Movie Service Switching Intention

Panca O. Hadi Putra, Muhammad Imam Santosa, Ika Chandra Hapsari, Achmad Nizar Hidayanto, Sherah Kurnia


This study aims to analyze the factors that influence a person's intention to use a subscription-based streaming service application using the perspective of the inertia of piracy movie application users. This study investigates the factors that affect the inertia of movie piracy application users. The theory used is a combination of the status quo bias theory and coping theory. This research uses a quantitative approach and an online survey method for data collection. Data collection resulted in 378 responses that were subsequently analyzed using the covariance-based structural equation modeling (CB-SEM) technique. It was found that inertia (the level of user inertia) negatively affects intention to use (the intention to use a subscription-based streaming service application) and convenience. In addition, convenience, perceived controllability (a person's level of control over the application), and morality positively influence intention to use. Furthermore, it was also found that perceived cost and personalization do not affect the intention to use. Inertia is also positively and significantly influenced by the transition cost (effort to move). The factors that have the highest correlation values are transition cost and inertia.


Doi: 10.28991/ESJ-2022-06-05-06

Full Text: PDF


Online Movie Service; Piracy; Switching; Status Quo Bias Theory; Coping Theory; CB-SEM.


Ministry of Communications and Informatics. (2022). Indonesia Digital Literacy Index 2021. Available online: https://indonesia.go.id/kategori/editorial/3962/literasi-digital-masyarakat-indonesia-membaik (accessed on May 2022). (In Indonesian).

Jakarta Globe. (2018). Piracy Still Scourge of Indonesia’s Film Industry. Available online: https://jakartaglobe.id/lifestyle/piracy-still-scourge-indonesias-film-industry (accessed on April 2022).

Hakim, A. (2022). Behind the Scenes: How Digital Piracy Hurts Indonesia's Film Industry. Kompas Gramedia Digital Group. Available online: https://tekno.kompas.com/read/2022/03/09/10020057/di-balik-layar-bagaimana-pembajakan-digital-melukai-industri-film-indonesia?page=all (accessed on July 2022). (In Indonesian).

Akamai Intelligent Security Stars at the Edge. (2022). State of the Internet, Pirates in the Outfield, 8(1). Available online: https://www.akamai.com/resources/state-of-the-internet/soti-security-pirates-in-the-outfield (accessed on July 2022).

Pertiwi, W. K. (2020). Pirated Film Sites Can Still Be Accessed, Indonesia Threatened by US Sanctions. Kompas Gramedia Digital Group. Available online: https://tekno.kompas.com/read/2020/01/27/15320037/situs-film-bajakan-masih-bisa-diakses-indonesia-terancam-sanksi-as?page=all (accessed on July 2022). (In Indonesian).

Uberti, D. (2020). Coronavirus Lockdowns Lead to Surge in Digital Piracy. The Wall Street Journal. Available online: https://www.wsj.com/articles/coronavirus-lockdowns-lead-to-surge-in-digital-piracy-11587634202 (accessed on July 2022).

Arli, D., & Tjiptono, F. (2016). Consumer digital piracy behaviour among youths: insights from Indonesia. Asia Pacific Journal of Marketing and Logistics, 28(5), 898–922. doi:10.1108/APJML-11-2015-0163.

Jacobs, R. S., Heuvelman, A., Tan, M., & Peters, O. (2012). Digital movie piracy: A perspective on downloading behavior through social cognitive theory. Computers in Human Behavior, 28(3), 958–967. doi:10.1016/j.chb.2011.12.017.

Phau, I., Lim, A., Liang, J., & Lwin, M. (2014). Engaging in digital piracy of movies: A theory of planned behaviour approach. Internet Research, 24(2), 246–266. doi:10.1108/IntR-11-2012-0243.

Tjiptono, F., Arli, D., & Viviea. (2016). Gender and digital privacy: Examining determinants of attitude toward digital piracy among youths in an emerging market. International Journal of Consumer Studies, 40(2), 168–178. doi:10.1111/ijcs.12240.

Phau, I., Teah, M., & Liang, J. (2016). Investigating the Factors Influencing Digital Movie Piracy. Journal of Promotion Management, 22(5), 637–664. doi:10.1080/10496491.2016.1185491.

Rura, C. (2020). Sweet Seduction Streaming Services in Indonesia. Medcom.id. Available online: https://www.medcom.id/hiburan/eksklusif/nN9wPxjk-rayuan-manis-layanan-streaming-di-indonesia (accessed on May 2022).

Nhan, J., Bowen, K., & Bartula, A. (2020). A comparison of a public and private university of the effects of low-cost streaming services and income on movie piracy. Technology in Society, 60, 101213. doi:10.1016/j.techsoc.2019.101213.

De Matos, M. G., Ferreira, P., & Smith, M. D. (2018). The effect of subscription video-on-demand on piracy: Evidence from a household-level randomized experiment. Management Science, 64(12), 5610–5630. doi:10.1287/mnsc.2017.2875.

Elswah, M. (2016). Netflix vs. Illegal Downloading: Digital Movie Piracy in Egypt. SSRN Electronic Journal, 1-28. doi:10.2139/ssrn.2882715.

Kim, M. S., Kim, E., Hwang, S. Y., Kim, J., & Kim, S. (2017). Willingness to pay for over-the-top services in China and Korea. Telecommunications Policy, 41(3), 197–207. doi:10.1016/j.telpol.2016.12.011.

Oyedele, A., & Simpson, P. M. (2018). Streaming apps: What consumers value. Journal of Retailing and Consumer Services, 41, 296–304. doi:10.1016/j.jretconser.2017.04.006.

Sardanelli, D., Vollero, A., Siano, A., & Bottoni, G. (2019). Lowering the pirate flag: a TPB study of the factors influencing the intention to pay for movie streaming services. Electronic Commerce Research, 19(3), 549–574. doi:10.1007/s10660-019-09346-7.

Ström, J., & Martinez, K. B. (2013). The Determinants of Customer Satisfaction, Loyalty and Willingness to Pay in Subscription based Streaming Services. Bachelor Thesis, department of Marketing and Strategy, Stockholm School of Economics. Available online: http://arc.hhs.se/download.aspx?MediumId=1997 (accessed on May 2022).

Hasan, V. A. (2017). Analisis Faktor-Faktor Yang Mempengaruhi Willingness to Subscribe: Telaah Pada Layanan Video on Demand Netflix. Jurnal Manajemen, 9(1), 22–38. doi:10.31937/manajemen.v9i1.595.

Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1, 7–59. doi:10.1007/BF00055564.

Gong, X., Zhang, K. Z. K., Chen, C., Cheung, C. M. K., & Lee, M. K. O. (2020). Transition from web to mobile payment services: The triple effects of status quo inertia. International Journal of Information Management, 50, 310–324. doi:10.1016/j.ijinfomgt.2019.08.006.

Beaudry, & Pinsonneault. (2005). Understanding User Responses to Information Technology: A Coping Model of User Adaptation. MIS Quarterly, 29(3), 493. doi:10.2307/25148693.

Liang, & Xue. (2009). Avoidance of Information Technology Threats: A Theoretical Perspective. MIS Quarterly, 33(1), 71. doi:10.2307/20650279.

Belleflamme P., Peitz M. (2014) Digital Piracy. In: Backhaus J. (Eds.) Encyclopedia of Law and Economics. Springer, New York City, United States. doi:10.1007/978-1-4614-7883-6_13-1.

Peitz, M., & Waelbroeck, P. (2021). Piracy of Digital Products: A Critical Review of the Economics Literature. SSRN Electronic Journal. doi:10.2139/ssrn.466063.

Lu, S., Rajavi, K., & Dinner, I. (2021). The effect of over-the-top media services on piracy search: Evidence from a natural experiment. Marketing Science, 40(3), 548–568. doi:10.1287/mksc.2020.1256.

Siponen, M., Vance, A., & Willison, R. (2012). New insights into the problem of software piracy: The effects of neutralization, shame, and moral beliefs. Information and Management, 49(7–8), 334–341. doi:10.1016/j.im.2012.06.004.

Graf-Vlachy, L., Goyal, T., Ouardi, Y., & König, A. (2022). The politics of piracy: political ideology and the usage of pirated online media. Information Technology and Management, 23(1), 51–63. doi:10.1007/s10799-021-00341-9.

Farisi, F. A. (2021). The Impact of Film Piracy to Customer Behavior toward Indonesian Film Market. International Journal of Business and Technology Management, 3(3), 92-101.

Satchell, L. P., Corr, P. J., & Latzman, R. D. (2022). Pirates with psychopathic personalities? The role of sub-clinical and normative traits in illegal streaming and downloading of media. Journal of Research in Personality, 96, 104158. doi:10.1016/j.jrp.2021.104158.

Daniels, R. H. (2017). Subscription Video on Demand: Viewing preferences among New Zealand audiences. Master Thesis, Master of Communication Studies (MCS). Auckland University of Technology, Auckland, New Zealand. Available online: http://orapp.aut.ac.nz/handle/10292/10863 (accessed on July 2022).

Spilker, H. S., & Colbjørnsen, T. (2020). The dimensions of streaming: toward a typology of an evolving concept. Media, Culture and Society, 42(7–8), 1210–1225. doi:10.1177/0163443720904587.

McCarthy, D. M., Fader, P. S., & Hardie, B. G. S. (2017). Valuing subscription-based businesses using publicly disclosed customer data. Journal of Marketing, 81(1), 17–35. doi:10.1509/jm.15.0519.

Arditi, D. (2021). Streaming Culture: Subscription platforms and the unending consumption of culture. Emerald Group Publishing, Bingley, United Kingdom.

Riekkinen, J. (2018). Piracy versus Netflix: Subscription Video on Demand Dissatisfaction as an Antecedent of Piracy. Proceedings of the 51st Hawaii International Conference on System Sciences. doi:10.24251/hicss.2018.450.

Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310–322. doi:10.1016/j.chb.2009.10.013.

Xu, G., & Gutiérrez, J. A. (2006). An exploratory study of killer applications and critical success factors in m-commerce. Journal of Electronic Commerce in Organizations, 4(3), 63–79. doi:10.4018/jeco.2006070104.

Wang, C., Teo, T. S. H., & Liu, L. (2020). Perceived value and continuance intention in mobile government service in China. Telematics and Informatics, 48, 101348. doi:10.1016/j.tele.2020.101348.

Wessel, M., & Thies, F. (2015). The effects of personalization on purchase intentions for online news: An experimental study of different personalization increments. 23rd European Conference on Information Systems (ECIS 2015), May 26-29, 2015, Münster, Germany.

Zhang, K. Z. K., Gong, X., Zhao, S. J., & Lee, M. K. O. (2016). Are you afraid of transiting from web to mobile payment? The bias and moderating role of inertia. Pacific Asia Conference on Information Systems (PACIS 2016), June 27-July 1, Chiayi, taiwan.

Bala, H., & Venkatesh, V. (2016). Adaptation to information technology: A holistic nomological network from implementation to job outcomes. Management Science, 62(1), 156–179. doi:10.1287/mnsc.2014.2111.

Christophe, M., Elie-Dit-Cosaque, C. M., & Straub, D. W. (2011). Opening the black box of system usage: User adaptation to disruptive IT. European Journal of Information Systems, 20(5), 589–607. doi:10.1057/ejis.2010.23.

Bhattacherjee, A., Davis, C. J., Connolly, A. J., & Hikmet, N. (2018). User response to mandatory IT use: a coping theory perspective. European Journal of Information Systems, 27(4), 395–414. doi:10.1057/s41303-017-0047-0.

Lee, K., & Joshi, K. (2017). Examining the use of status quo bias perspective in IS research: need for re-conceptualizing and incorporating biases. Information Systems Journal, 27(6), 733–752. doi:10.1111/isj.12118.

Matzler, K., Grabner-Kräuter, S., & Bidmon, S. (2008). Risk aversion and brand loyalty: The mediating role of brand trust and brand affect. Journal of Product and Brand Management, 17(3), 154–162. doi:10.1108/10610420810875070.

Nel, J., & Boshoff, C. (2020). Status quo bias and shoppers’ mobile website purchasing resistance. European Journal of Marketing, 54(6), 1433–1466. doi:10.1108/EJM-02-2018-0144.

Tsai, J. M., Cheng, M. J., Tsai, H. H., Hung, S. W., & Chen, Y. L. (2019). Acceptance and resistance of telehealth: The perspective of dual-factor concepts in technology adoption. International Journal of Information Management, 49, 34–44. doi:10.1016/j.ijinfomgt.2019.03.003.

Lin, T. C., & Huang, S. L. (2014). Understanding the determinants of consumers’ switching intentions in a standards war. International Journal of Electronic Commerce, 19(1), 163–189. doi:10.2753/JEC1086-4415190105.

Polites, G. L., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21–42. doi:10.2307/41410404.

Mallat, N., Rossi, M., Tuunainen, V. K., & Oorni, A. (2006). The Impact of Use Situation and Mobility on the Acceptance of Mobile Ticketing Services. Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06). doi:10.1109/hicss.2006.472.

Xu, Y., & Cai, S. (2004). A Concpetual Model of Customer Value in eCommerce. 12th European Conference on Information System (ECIS 2004), June 14-16, Turuk, Finland.

Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. Journal of Family Business Strategy, 5(1), 116–128. doi:10.1016/j.jfbs.2013.12.002.

Vu, D. V., Tran, G. N., & Nguyen, C. V. (2022). Digital Transformation, Student Satisfaction, Word of Mouth and Online Learning Intention in Vietnam. Emerging Science Journal, 6, 40–54. doi:10.28991/esj-2022-sied-04

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), 879–903. doi:10.1037/0021-9010.88.5.879.

Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate Data Analysis: A Global Perspective (Vol. 7). Pearson, New Jerssy, United States.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. doi:10.1177/002224378101800104.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. doi:10.2753/MTP1069-6679190202.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. doi:10.1177/002224378101800104.

Joaquim, B. F. G. (2017). How does Digital Piracy influence the subscription of online video bundling services?. Master Thesis, Nova Information Management School, New University of Lisbon, Lisbon Portugal. Available online: https://run.unl.pt/bitstream/10362/19889/1/TGI0072.pdf (accessed on May 2022).

Kim, H. W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly: Management Information Systems, 33(3), 567–582. doi:10.2307/20650309.

Albashrawi, M., & Motiwalla, L. (2019). Privacy and Personalization in Continued Usage Intention of Mobile Banking: An Integrative Perspective. Information Systems Frontiers, 21(5), 1031–1043. doi:10.1007/s10796-017-9814-7.

Logsdon, J. M., Thompson, J. K., & Reid, R. A. (1994). Software piracy: Is it related to level of moral judgment? Journal of Business Ethics, 13(11), 849–857. doi:10.1007/BF00871698.

Wang, Y. D., & Emurian, H. H. (2005). An overview of online trust: Concepts, elements, and implications. Computers in Human Behavior, 21(1), 105–125. doi:10.1016/j.chb.2003.11.008.

Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873–891. doi:10.1016/j.chb.2004.03.003.

Juschten, M., Jiricka-Pürrer, A., Unbehaun, W., & Hössinger, R. (2019). The mountains are calling! An extended TPB model for understanding metropolitan residents’ intentions to visit nearby alpine destinations in summer. Tourism Management, 75, 293–306. doi:10.1016/j.tourman.2019.05.014.

Hennig-Thurau, T., Henning, V., & Sattler, H. (2007). Consumer file sharing of motion pictures. Journal of Marketing, 71(4), 1–18. doi:10.1509/jmkg.71.4.1.

Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414. doi:10.1016/j.chb.2016.03.030.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-06


  • There are currently no refbacks.

Copyright (c) 2022 Panca O. Hadi Putra, Muhammad Imam Santosa, Ika Chandra Hapsari, Achmad Nizar Hidayanto, Sherah Kurnia