A New Efficiency Improvement of Ensemble Learning for Heart Failure Classification by Least Error Boosting
Abstract
Doi: 10.28991/ESJ-2023-07-01-010
Full Text: PDF
Keywords
References
Bazoukis, G., Stavrakis, S., Zhou, J., Bollepalli, S. C., Tse, G., Zhang, Q., Singh, J. P., & Armoundas, A. A. (2021). Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review. Heart Failure Reviews, 26(1), 23–34. doi:10.1007/s10741-020-10007-3.
Lippi, G., & Sanchis-Gomar, F. (2020). Global epidemiology and future trends of heart failure. AME Medical Journal, 5(15), 1-6. doi:10.21037/amj.2020.03.03.
Groenewegen, A., Rutten, F. H., Mosterd, A., & Hoes, A. W. (2020). Epidemiology of heart failure. European Journal of Heart Failure, 22(8), 1342–1356. doi:10.1002/ejhf.1858.
Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access, 9, 39707–39716. doi:10.1109/access.2021.3064084.
Mehmood, A., Iqbal, M., Mehmood, Z., Irtaza, A., Nawaz, M., Nazir, T., & Masood, M. (2021). Prediction of Heart Disease Using Deep Convolutional Neural Networks. Arabian Journal for Science and Engineering, 46(4), 3409–3422. doi:10.1007/s13369-020-05105-1.
Sohrabi, B., Vanani, I. R., Gooyavar, A., & Naderi, N. (2019). Predicting the Readmission of Heart Failure Patients through Data Analytics. Journal of Information and Knowledge Management, 18(1), 1950012. doi:10.1142/S0219649219500126.
Myint, K., & Khaung Tin, H. H. (2020). Analyzing the Comparison of C4.5, CART and C5.0 Algorithms on Heart Disease Dataset using Decision Tree Method. Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India. doi:10.4108/eai.27-2-2020.2303221.
Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(1), 1–16. doi:10.1186/s12911-020-1023-5.
Angraal, S., Mortazavi, B. J., Gupta, A., Khera, R., Ahmad, T., Desai, N. R., Jacoby, D. L., Masoudi, F. A., Spertus, J. A., & Krumholz, H. M. (2020). Machine Learning Prediction of Mortality and Hospitalization in Heart Failure with Preserved Ejection Fraction. JACC: Heart Failure, 8(1), 12–21. doi:10.1016/j.jchf.2019.06.013.
Lorenzoni, G., Sabato, S. S., Lanera, C., Bottigliengo, D., Minto, C., Ocagli, H., De Paolis, P., Gregori, D., Iliceto, S., & Pisanò, F. (2019). Comparison of machine learning techniques for prediction of hospitalization in heart failure patients. Journal of Clinical Medicine, 8(9), 1298. doi:10.3390/jcm8091298.
Wang, L., Zhou, W., Chang, Q., Chen, J., & Zhou, X. (2019). Deep ensemble detection of congestive heart failure using short-term RR intervals. IEEE Access, 7, 69559–69574. doi:10.1109/ACCESS.2019.2912226.
Ali, F., El-Sappagh, S., Islam, S. M. R., Kwak, D., Ali, A., Imran, M., & Kwak, K. S. (2020). A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, 63, 208–222. doi:10.1016/j.inffus.2020.06.008.
UCI Repository (2017). Heart failure clinical records Data Set. UC Irvine Machine Learning Repository, California, United States. Available online: https://archive.ics.uci.edu/ml/machine-learning-databases/00519/ (access 21 June 2021).
Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC Press, Boca Raton, United States. doi:10.1201/b12207.
Freund, Y., & Schapire, R. E. (1996). Schapire R: Experiments with a new boosting algorithm. 13th International Conference on Machine Learning, 3-6 July, 1996, Bari, Italy.
Jones, Y., Hillen, N., Friday, J., Pellicori, P., Kean, S., Murphy, C., & Cleland, J. (2020). A comparison of machine learning models for predicting rehospitalisation and death after a first hospitalisation with heart failure. European Heart Journal, 41(Supplement_2), 946–0984. doi:10.1093/ehjci/ehaa946.0984.
Holmes, D.E., Jain, L.C. (2008). Introduction to Bayesian Networks. Innovations in Bayesian Networks. Studies in Computational Intelligence, 156, Springer, Berlin, Germany. doi:10.1007/978-3-540-85066-3_1.
Kramer, O. (2011). Dimensionality Reduction by Unsupervised K-Nearest Neighbor Regression. 2011 10th International Conference on Machine Learning and Applications and Workshops. doi:10.1109/icmla.2011.55.
Salzberg, S. L. (1994). Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16, 235-240. doi:10.1023/A:1022645310020.
Shmueli, G., Patel, N. R., & Bruce, P. C. (2011). Data mining for business intelligence: Concepts, techniques, and applications in Microsoft Office Excel with XLMiner. John Wiley and Sons, Hoboken, United States.
Kaggle. (2019). Cardiovascular Disease dataset. Kaggle Inc. San Francisco, United States. Available online: https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset (accessed on August 2022).
UCI Repository. (2017). Statlog (Heart) Data Set. UC Irvine Machine Learning Repository, California, United States. Available online: https://archive.ics.uci.edu/ml/datasets/statlog+(heart) (accessed on August 2022).
UCI Repository (2022). Heart Disease Data Set (Issue value 0). UC Irvine Machine Learning Repository, California, United States. Available online: https://archive.ics.uci.edu/ml/datasets/Heart+Disease
Louridi, N., Amar, M., & Ouahidi, B. E. (2019). Identification of Cardiovascular Diseases Using Machine Learning. 2019 7th Mediterranean Congress of Telecommunications (CMT). doi:10.1109/cmt.2019.8931411.
Khennou, F., Fahim, C., Chaoui, H., & Chaoui, N. E. H. (2019). A machine learning approach: Using predictive analytics to identify and analyze high risks patients with heart disease. International Journal of Machine Learning and Computing, 9(6), 762–767. doi:10.18178/ijmlc.2019.9.6.870.
Ali, L., Khan, S. U., Anwar, M., & Asif, M. (2019). Early Detection of Heart Failure by Reducing the Time Complexity of the Machine Learning based Predictive Model. 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). doi:10.1109/icecce47252.2019.8940737.
Escamilla, A., El Hassani, A., & Andres, E. (2019). Dimensionality Reduction in Supervised Models-based for Heart Failure Prediction. Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods. doi:10.5220/000731370388039.
Satyanandam, N., & Satyanarayana, C. (2021). An Effective Analytics using Machine Learning Integrated Approaches for Diagnosis, Severity Estimation and Prediction of Heart Disease. IOP Conference Series: Materials Science and Engineering, 1074(1), 012006. doi:10.1088/1757-899x/1074/1/012006.
Javeed, A., Zhou, S., Yongjian, L., Qasim, I., Noor, A., & Nour, R. (2019). An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection. IEEE Access, 7, 180235–180243. doi:10.1109/ACCESS.2019.2952107.
Katarya, R., & Meena, S. K. (2021). Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis. Health and Technology, 11(1), 87–97. doi:10.1007/s12553-020-00505-7.
Ali, L., Khan, S. U., Golilarz, N. A., Yakubu, I., Qasim, I., Noor, A., & Nour, R. (2019). A Feature-Driven Decision Support System for Heart Failure Prediction Based on χ2 Statistical Model and Gaussian Naive Bayes. Computational and Mathematical Methods in Medicine, 2019, 1–8. doi:10.1155/2019/6314328.
DOI: 10.28991/ESJ-2023-07-01-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ployphan Sornsuwit, Phimkarnda Jundahuadong, Siwarit Pongsakornrungsilp