Emerging Technological Methods for Effective Farming by Cloud Computing and IoT

A. R. Abdul Rajak


Agriculture provides a solution to the vast majority of problems that threaten human existence. When it comes to agriculture, new or contemporary technology can have a significant impact on a number of factors, including how much food is produced and how long it stays edible. The application of best management practices, for instance, is very common these days in the quest to improve agriculture. New hybrids are resistant to illnesses, use fewer pesticides, have natural defenses against pests, and may be grown in methods that minimize the number of diseases and pests that can affect them. Plants are capable of producing oxygen and medicines in addition to the food that they provide. Consequently, agriculture depends on plants that are in good health. A plant needs water, sunlight, and crucial fertilizer in order to receive the nutrients it needs to have a healthy plant. So, it is necessary to keep an eye on the health of the plant. The article discusses various technological solutions that can be implemented to automate the plant monitoring system. The Internet of Things and cloud computing are two technologies that are contributing to the development of intelligent technology by supplanting traditional agricultural practices. This clever device checks on the well-being of the plants. In order to enable intelligent agriculture, the technology relies on sensors that are dependent on IoT sensors. These sensors monitor the temperature, soil moisture, intensity of the sun's light, air quality value of the soil, vibration, and humidity in the immediate environment of the plant. The networking of these sensors ensures that the plant will continue to be healthy and will function in the appropriate manner. The findings that have been obtained up to this point are encouraging for the continuance of this strategy, which results in the highest possible profit for farmers.


Doi: 10.28991/ESJ-2022-06-05-07

Full Text: PDF


Internet of Things; Cloud; IoT; Sensor; Plant; Agriculture; Farm; Smart.


Kumar, A., Kumar, A., Singh, A. K., & Choudhary, A. K. (2021). IoT based energy efficient agriculture field monitoring and smart irrigation system using NodeMCU. Journal of Mobile Multimedia, 17(1–3), 345–360. doi:10.13052/jmm1550-4646.171318.

Aharari, A., & Yang, C. (2021). Development of IoT-based smart agriculture monitoring system for red radish plants production. International Journal of Reasoning-Based Intelligent Systems, 13(4), 227–234. doi:10.1504/IJRIS.2021.118648.

Rabhi, L., Falih, N., Afraites, L., & Bouikhalene, B. (2021). A functional framework based on big data analytics for smart farming. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1772–1779. doi:10.11591/ijeecs.v24.i3.pp1772-1779.

Parvin, S., Venkatraman, S., Souza-Daw, T. D., Fahd, K., Jackson, J., Kaspi, S., ... & Gawanmeh, A. (2019). Smart food security system using IOT and big data analytics. In 16th International Conference on Information Technology-New Generations (ITNG 2019) Springer, Switzerland, 253-258.

Pattnaik, S. K., Samal, S. R., Bandopadhaya, S., Swain, K., Choudhury, S., Das, J. K., Mihovska, A., & Poulkov, V. (2022). Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees inside Underground Mines by Using BLE. Sensors, 22(9), 3438. doi:10.3390/s22093438.

Gogumalla, P., Rupavatharam, S., Datta, A., Khopade, R., Choudhari, P., Dhulipala, R., & Dixit, S. (2022). Detecting Soil pH from Open-Source Remote Sensing Data: A Case Study of Angul and Balangir Districts, Odisha State. Journal of the Indian Society of Remote Sensing, 50(7), 1275–1290. doi:10.1007/s12524-022-01524-9.

Mageshkumar, C., & Sugunamuki, K. R. (2020). IOT Based Smart Farming. 2020 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India. doi:10.1109/iccci48352.2020.9104103.

Subashini, M. M., Das, S., Heble, S., Raj, U., & Karthik, R. (2018). Internet of things based wireless plant sensor for smart farming. Indonesian Journal of Electrical Engineering and Computer Science, 10(2), 456–468. doi:10.11591/ijeecs.v10.i2.pp456-468.

Wayangkau, I. H., Mekiuw, Y., Rachmat, R., Suwarjono, S., & Hariyanto, H. (2021). Utilization of IoT for Soil Moisture and Temperature Monitoring System for Onion Growth. Emerging Science Journal, 4, 102–115. doi:10.28991/esj-2021-sp1-07

Mat, I., Mohd Kassim, M. R., Harun, A. N., & Yusoff, I. M. (2018). Smart Agriculture Using Internet of Things. 2018 IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia. doi:10.1109/icos.2018.8632817.

Yang, J., Liu, M., Lu, J., Miao, Y., Hossain, M. A., & Alhamid, M. F. (2018). Botanical Internet of Things: Toward Smart Indoor Farming by Connecting People, Plant, Data and Clouds. Mobile Networks and Applications, 23(2), 188–202. doi:10.1007/s11036-017-0930-x.

Dagar, R., Som, S., & Khatri, S. K. (2018). Smart Farming - IoT in Agriculture. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India. doi:10.1109/ICIRCA.2018.8597264.

Li, M., Xu, Y., Fu, Q., Singh, V. P., Liu, D., & Li, T. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586. doi:10.1016/j.jhydrol.2020.124888.

Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., AbdRahman, M. K. I., Otuoze, A. O., … Ijike, O. D. (2021). IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Information Processing in Agriculture, 8(2), 270–283. doi:10.1016/j.inpa.2020.05.004.

Rohith, M., Sainivedhana, R., & Sabiyath Fatima, N. (2021). IoT Enabled Smart Farming and Irrigation System. 5th International Conference on Intelligent Computing and Control Systems (ICICCS2021). doi:10.1109/iciccs51141.2021.9432085.

Collado, E., Fossatti, A., & Saez, Y. (2019). Smart farming: A potential solution towards a modern and sustainable agriculture in Panama. AIMS Agriculture and Food, 4(2), 266–284. doi:10.3934/AGRFOOD.2019.2.266.

Sadeghzadeh, M. A., Jannati, M., & Melekinezhad, H. (2022). Solar-Thermophysical Irrigation Instrument for Container Plants. Journal of Irrigation and Drainage Engineering, 148(7). doi:10.1061/(asce)ir.1943-4774.0001686.

Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences (Switzerland), 11(13). doi:10.3390/app11135911.

Alwis, S. De, Hou, Z., Zhang, Y., Na, M. H., Ofoghi, B., & Sajjanhar, A. (2022). A survey on smart farming data, applications and techniques. Computers in Industry, 138. doi:10.1016/j.compind.2022.103624.

Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 5(5), 3758–3773. doi:10.1109/JIOT.2018.2844296.

Bastan, M., Ramazani Khorshid-Doust, R., Delshad Sisi, S., & Ahmadvand, A. (2018). Sustainable development of agriculture: a system dynamics model. Kybernetes, 47(1), 142–162. doi:10.1108/K-01-2017-0003.

Abhiram, M. S. D., Kuppili, J., & Manga, N. A. (2020). Smart Farming System using IoT for Efficient Crop Growth. 2020 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India. doi:10.1109/SCEECS48394.2020.147.

Bhatnagar, V., Chandra, R., & Prasad, J. (2019). Soil moisture sensors for sustainable irrigation: Comparison and calibration. International Journal of Sustainable Agricultural Management and Informatics, 5(1), 25–36. doi:10.1504/IJSAMI.2019.101375.

Ramos-Cosi, S., & Vargas-Cuentas, N. I. (2021). Prototype of a system for quail farming with arduino nano platform, DHT11 and LM35 sensors, in Arequipa, Peru. International Journal of Emerging Technology and Advanced Engineering, 11(11), 140–146. doi:10.46338/IJETAE1121_16.

Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., & Cao, C. (2021). Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Advanced Materials, 33(20). doi:10.1002/adma.202007764.

Gardiner, B., Berry, P., & Moulia, B. (2016). Review: Wind impacts on plant growth, mechanics and damage. Plant Science, 245, 94–118. doi:10.1016/j.plantsci.2016.01.006.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-07


Copyright (c) 2022 Abdul Rajak