Utilizing Machine Learning to Reassess the Predictability of Bank Stocks

Hera Antonopoulou, Leonidas Theodorakopoulos, Constantinos Halkiopoulos, Vicky Mamalougkou

Abstract


Objectives: Accurate prediction of stock market returns is a very challenging task due to the volatile and non-linear nature of the financial stock markets. In this work, we consider conventional time series analysis techniques with additional information from the Google Trend website to predict stock price returns. We further utilize a machine learning algorithm, namely Random Forest, to predict the next day closing price of four Greek systemic banks. Methods/Analysis: The financial data considered in this work comprise Open, Close prices of stocks and Trading Volume. In the context of our analysis, these data are further used to create new variables that serve as additional inputs to the proposed machine learning based model. Specifically, we consider variables for each of the banks in the dataset, such as 7 DAYS MA,14 DAYS MA, 21 DAYS MA, 7 DAYS STD DEV and Volume. One step ahead out of sample prediction following the rolling window approach has been applied. Performance evaluation of the proposed model has been done using standard strategic indicators: RMSE and MAPE. Findings: Our results depict that the proposed models effectively predict the stock market prices, providing insight about the applicability of the proposed methodology scheme to various stock market price predictions. Novelty /Improvement: The originality of this study is that Machine Learning Methods highlighted by the Random Forest Technique were used to forecast the closing price of each stock in the Banking Sector for the following trading session.

 

Doi: 10.28991/ESJ-2023-07-03-04

Full Text: PDF


Keywords


Machine Learning; Random Forest; Predictability; Bank Stocks; Google Trends.

References


Masoud, N. M. H. (2013). The impact of stock market performance upon economic growth. International Journal of Economics and Financial Issues, 3(4), 788–798.

Tan, Z., Yan, Z., & Zhu, G. (2019). Stock selection with random forest: An exploitation of excess return in the Chinese stock market. Heliyon, 5(8), 2310. doi:10.1016/j.heliyon.2019.e02310.

Jiang, W. (2021). Applications of deep learning in stock market prediction: recent progress. Expert Systems with Applications, 184, 115537. doi:10.1016/j.eswa.2021.115537.

Murkute, A., & Sarode, T. (2015). Forecasting Market Price of Stock using Artificial Neural Network. International Journal of Computer Applications, 124(12), 11–15. doi:10.5120/ijca2015905681.

Hur, J., Raj, M., & Riyanto, Y. E. (2006). Finance and trade: A cross-country empirical analysis on the impact of financial development and asset tangibility on international trade. World Development, 34(10), 1728–1741. doi:10.1016/j.worlddev.2006.02.003.

Dai, Y., & Zhang, Y. (2013). Machine learning in stock price trend forecasting. Stanford University, California, United States.

Li, L., Wu, Y., Ou, Y., Li, Q., Zhou, Y., & Chen, D. (2017). Research on machine learning algorithms and feature extraction for time series. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). doi:10.1109/pimrc.2017.8292668.

Seber, G. A., & Lee, A. J. (2003). Linear regression analysis. John Wiley & Sons, New York, United States. doi:10.1002/9780471722199.

Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro-fuzzy techniques. European Journal of Operational Research, 276(2), 770–780. doi:10.1016/j.ejor.2019.01.040.

Zhang, P. G. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. doi:10.1016/S0925-2312(01)00702-0.

Di, X. (2014). Stock trend prediction with technical indicators using SVM. Independent Work Report, Leland Stanford Junior University, Stanford, United States.

Devi, K. N., Bhaskaran, V. M., & Kumar, G. P. (2015). Cuckoo optimized SVM for stock market prediction. 2015 International Conference on Innovations in Information, Embedded and Communication Systems. doi:10.1109/iciiecs.2015.7192906.

Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R News, 2(3), 18-22.

Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock market prices using random forest. arXiv Preprint arXiv:1605.00003. doi:10.48550/arXiv.1605.00003.

Manish, K., & Thenmozhi, M. (2011). Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest. SSRN Electronic Journal. doi:10.2139/ssrn.876544.

Misra, M., Yadav, A. P., & Kaur, H. (2018). Stock Market Prediction using Machine Learning Algorithms: A Classification Study. 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). doi:10.1109/icrieece44171.2018.9009178.

Singh, S., Madan, T. K., Kumar, J., & Singh, A. K. (2019). Stock Market Forecasting using Machine Learning: Today and Tomorrow. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). doi:10.1109/icicict46008.2019.8993160.

Pabuçcu, H., Ongan, S., & Ongan, A. (2020). Forecasting the movements of Bitcoin prices: an application of machine learning algorithms. Quantitative Finance and Economics, 4(4), 679–692. doi:10.3934/qfe.2020031.

Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of Big Data, 7(1), 66. doi:10.1186/s40537-020-00333-6.

Subasi, A., Amir, F., Bagedo, K., Shams, A., & Sarirete, A. (2021). Stock Market Prediction Using Machine Learning. Procedia Computer Science, 194, 173–179. doi:10.1016/j.procs.2021.10.071.

Srinu Vasarao, P., Chakkaravarthy, M. (2022). Time Series Analysis Using Random Forest for Predicting Stock Variances Efficiency. Intelligent Systems and Sustainable Computing. Smart Innovation, Systems and Technologies, 289, Springer, Singapore. doi:10.1007/978-981-19-0011-2_6.

Singh, D. G. (2022). Machine Learning Models in Stock Market Prediction. International Journal of Innovative Technology and Exploring Engineering, 11(3), 18–28. doi:10.35940/ijitee.c9733.0111322.

Aliyeva, A. (2022). Predicting Stock Prices Using Random Forest and Logistic Regression Algorithms. 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence, Lecture Notes in Networks and Systems, 362, Springer, Cham, Switzerland. doi:10.1007/978-3-030-92127-9_16.

Demirer, R., Gkillas, K., Gupta, R., & Pierdzioch, C. (2022). Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests. Journal of the Operational Research Society, 73(8), 1755–1767. doi:10.1080/01605682.2021.1936668.

Bouri, E., Gkillas, K., Gupta, R., & Pierdzioch, C. (2021). Forecasting Realized Volatility of Bitcoin: The Role of the Trade War. Computational Economics, 57(1), 29–53. doi:10.1007/s10614-020-10022-4.

Gkillas, K., Tantoula, M., & Tzagarakis, M. (2021). Transaction activity and bitcoin realized volatility. Operations Research Letters, 49(5), 715–719. doi:10.1016/j.orl.2021.06.016.

Görgen, K., Meirer, J., & Schienle, M. (2022). Predicting Value at Risk for Cryptocurrencies Using Generalized Random Forests. SSRN Electronic Journal. doi:10.2139/ssrn.4053537.

Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300. doi:10.1023/A:1018628609742.

Theodorakopoulos, L. (2022). Big data analysis in humanities and economics with machine learning techniques and use of cloud computing technologies. PhD Thesis, Department of Business Administration, University of Patras, Patras, Greece.

Antonopoulou, H., Mamalougou, V., & Theodorakopoulos, L. (2022). The Role of Economic Policy Uncertainty in Predicting Stock Return Volatility in the Banking Industry: A Big Data Analysis. Emerging Science Journal, 6(3), 569–577. doi:10.28991/ESJ-2022-06-03-011.

Lazzeri, F. (2019). “Data Science Mindset: Six Principles to Build Healthy Data-Driven Organizations. InfoQ. Available online: https://www.infoq.com/articles/data-science-organization-framework (accessed on January 2023).

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts, Melbourne, Australia.

Soni, P., Tewari, Y., & Krishnan, D. (2022). Machine Learning Approaches in Stock Price Prediction: A Systematic Review. Journal of Physics: Conference Series, 2161(1). doi:10.1088/1742-6596/2161/1/012065.

Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H. C. (2021). Stock market prediction using machine learning techniques: A decade survey on methodologies, recent developments, and future directions. Electronics (Switzerland), 10(21). doi:10.3390/electronics10212717.

Theodorakopoulos, L., Antonopoulou, H., Mamalougou, V., & C. Giotopoulos, K. (2022). The drivers of volume volatility: A big data analysis based on economic uncertainty measures for the Greek banking system. Banks and Bank Systems, 17(3), 49–57. doi:10.21511/bbs.17(3).2022.05.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hera Antonopoulou, Leonidas Theodorakopoulos, Constantinos Halkiopoulos, Vicky Mamalougkou