Data Mining Applications in Banking Sector While Preserving Customer Privacy
Abstract
Doi: 10.28991/ESJ-2022-06-06-014
Full Text: PDF
Keywords
References
Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD ’00. doi:10.1145/342009.335438.
Cramer, R., Damgård, I., Nielsen, J.B. (2001). Multiparty Computation from Threshold Homomorphic Encryption. Advances in Cryptology — EUROCRYPT 2001, Lecture Notes in Computer Science, 2045. Springer, Berlin, Germany. doi:10.1007/3-540-44987-6_18.
Kantarcioglu, M., & Clifton, C. (2004). Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1026–1037. doi:10.1109/TKDE.2004.45.
Du, W., & Zhan, Z. (2002). Building decision tree classifier on private data. Proceedings of the IEEE International Conference on Privacy, Security and Data Mining-Volume 14, 1–8. 1 December, Maebashi City, Japan.
Evfimievski, A., Srikant, R., Agrawal, R., & Gehrke, J. (2002). Privacy preserving mining of association rules. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD ’02. doi:10.1145/775047.775080.
Kantarcıoǧlu, M., Clifton, C. (2004). Privately Computing a Distributed K-NN Classifier. Knowledge Discovery in Databases: PKDD 2004. PKDD 2004. Lecture Notes in Computer Science, 3202. Springer, Berlin, Germany. doi:10.1007/978-3-540-30116-5_27.
Jagannathan, G., & Wright, R. N. (2005). Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining-KDD ’05. doi:10.1145/1081870.1081942.
Wright, R., & Yang, Z. (2004). Privacy-preserving Bayesian network structure computation on distributed heterogeneous data. Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining- KDD ’04. doi:10.1145/1014052.1014145.
Gilburd, B., Schuster, A., & Wolff, R. (2004). Privacy-preserving data mining on data grids in the presence of malicious participants. Proceedings. 13th IEEE International Symposium on High Performance Distributed Computing, 24 August 2004 Honolulu, HI, USA. doi:10.1109/hpdc.2004.1323540.
Yao, A. C. (1982). Protocols for secure computations. 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982). doi:10.1109/sfcs.1982.38.
Atallah, M.J., Du, W. (2001). Secure Multi-party Computational Geometry. Algorithms and Data Structures, WADS 2001, Lecture Notes in Computer Science, 2125. Springer, Berlin, Germany. doi:10.1007/3-540-44634-6_16.
Boudot, F., Schoenmakers, B., & Traoré, J. (2001). A fair and efficient solution to the socialist millionaires’ problem. Discrete Applied Mathematics, 111(1–2), 23–36. doi:10.1016/S0166-218X(00)00342-5.
Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. Advances in Cryptology— EUROCRYPT ’99, EUROCRYPT 1999, Lecture Notes in Computer Science, 1592, Springer, Berlin, Germany. doi:10.1007/3-540-48910-X_16.
Du, W., Han, Y. S., & Chen, S. (2004). Privacy-Preserving Multivariate Statistical Analysis: Linear Regression and Classification. Proceedings of the 2004 SIAM International Conference on Data Mining. doi:10.1137/1.9781611972740.21.
Li, X., Yi, S., Cundy, A. B., & Chen, W. (2022). Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms. Journal of Cleaner Production, 371, 133612.doi:10.1016/j.jclepro.2022.133612.
Du, W., & Zhan, Z. (2003). Using randomized response techniques for privacy-preserving data mining. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD ’03. doi:10.1145/956750.956810.
Beaver, D. (1997). Commodity-based cryptography (extended abstract). Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing-STOC ’97. doi:10.1145/258533.258637.
Zhan, J., Matwin, S., Chang, L. (2005). Privacy-Preserving Collaborative Association Rule Mining. Data and Applications Security XIX. DBSec 2005, Lecture Notes in Computer Science, 3654. Springer, Berlin, Germany. doi:10.1007/11535706_12.
Hasheminejad, S. M. H., & Khorrami, M. (2018). Data mining techniques for analyzing bank customers: A survey. Intelligent Decision Technologies, 12(3), 303–321. doi:10.3233/IDT-180335.
Özmen, M., Aydoğan, E. K., Delice, Y., & Toksarı, M. D. (2020). Churn prediction in Turkey’s telecommunications sector: A proposed multiobjective–cost-sensitive ant colony optimization. WIREs Data Mining and Knowledge Discovery, 10(1). doi:10.1002/widm.1338.
Matsunaga, F. T., Brancher, J. D., & Busto, R. M. (2014). Data mining applications and techniques: A systematic review. Rev. Eletrônica Argentina-Brasil Tecnologias da Informação e da Comunicação, 1(2).
Olufemi Ogunleye, J. (2022). The Concept of Data Mining. Intechopen, London, United Kingdom. doi:10.5772/intechopen.99417.
Li, Y., Jiang, X., Wang, S., Xiong, H., & Ohno-Machado, L. (2016). VERTIcal Grid lOgistic regression (VERTIGO). Journal of the American Medical Informatics Association, 23(3), 570–579. doi:10.1093/jamia/ocv146.
Das, A., Bhattacharyya, D. K., & Kalita, J. K. (2003). Horizontal vs. vertical partitioning in association rule mining: a comparison. Proceedings of the 6th International Conference on Computational Intelligence and Natural Computation (CINC), 1617-1620, 26-30 September, 2003, Embassy Suites Hotel and Conference Center, Cary, North Carolina, United States.
Hemlata, & Gulia, P. (2017). Novel algorithm for PPDM of vertically partitioned data. International Journal of Applied Engineering Research, 12(12), 3090–3096.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 226–231, 2-4 August, 1996, Portland Oregon, United States.
Evfimievski, A., Gehrke, J., & Srikant, R. (2003). Limiting privacy breaches in privacy preserving data mining. Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems-PODS ’03. doi:10.1145/773153.773174.
Lindell, Y., & Pinkas, B. (2012). Secure two-party computation via cut-and-choose oblivious transfer. Journal of Cryptology, 25(4), 680–722. doi:10.1007/s00145-011-9107-0.
Yang, Z., & Wright, R. N. (2006). Privacy-preserving computation of bayesian networks on vertically partitioned data. IEEE Transactions on Knowledge and Data Engineering, 18(9), 1253–1264. doi:10.1109/TKDE.2006.147.
Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T. (2005). On Private Scalar Product Computation for Privacy-Preserving Data Mining. Information Security and Cryptology – ICISC 2004. ICISC 2004, Lecture Notes in Computer Science, 3506. Springer, Berlin, Germany. doi:10.1007/11496618_9.
Har-Peled, S., & Sadri, B. (2005). How fast is the k-means method? Algorithmica, 41(3), 185–202. doi:10.1007/s00453-004-1127-9.
Jagannathan, G., & Wright, R. N. (2005). Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining-KDD ’05. doi:10.1145/1081870.1081942.
Freedman, M.J., Nissim, K., Pinkas, B. (2004). Efficient Private Matching and Set Intersection. Advances in Cryptology-EUROCRYPT 2004. EUROCRYPT 2004, Lecture Notes in Computer Science, 3027. Springer, Berlin, Germany. doi:10.1007/978-3-540-24676-3_1.
Bunn, P., & Ostrovsky, R. (2007). Secure two-party k-means clustering. Proceedings of the 14th ACM Conference on Computer and Communications Security- CCS2007. doi:10.1145/1315245.1315306.
Malkhi, D., Nisan, N., Pinkas, B., & Sella, Y. (2004). Fairplay-Secure Two-Party Computation System. USENIX Security Symposium, 9-13August, 2004, San Diego, United States.
Kissner, L., Song, D. (2005). Privacy-Preserving Set Operations. Advances in Cryptology – CRYPTO 2005, CRYPTO 2005, Lecture Notes in Computer Science, 3621. Springer, Berlin, Germany. doi:10.1007/11535218_15.
DOI: 10.28991/ESJ-2022-06-06-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ozge Doguc