New Approach to Image Segmentation: U-Net Convolutional Network for Multiresolution CT Image Lung Segmentation
Abstract
Doi: 10.28991/ESJ-2023-07-02-014
Full Text: PDF
Keywords
References
Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 7068349, 1-14. doi:10.1155/2018/7068349.
Soydaner, D. (2020). A Comparison of Optimization Algorithms for Deep Learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(13), 1–26. doi:10.1142/S0218001420520138.
Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2018). Understanding of a convolutional neural network. Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, 1–6. doi:10.1109/ICEngTechnol.2017.8308186.
Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516. doi:10.1007/s10462-020-09825-6.
Hao, S., Zhou, Y., & Guo, Y. (2020). A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing, 406, 302–321. doi:10.1016/j.neucom.2019.11.118.
Salehi, S.S.M., Erdogmus, D., Gholipour, A. (2017). Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks. Machine Learning in Medical Imaging. MLMI 2017, Lecture Notes in Computer Science, 10541, Springer, Cham, Switzerland. doi:10.1007/978-3-319-67389-9_44.
Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.-W., & Wu, J. (2020). UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/icassp40776.2020.9053405.
Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015, Lecture Notes in Computer Science, 9351. Springer, Cham, Switzerland. doi:10.1007/978-3-319-24574-4_28.
Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., & Maier-Hein, K. H. (2019). Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. Bildverarbeitung Für Die Medizin 2019, 22–22, Springer Vieweg, Wiesbaden, Germany. doi:10.1007/978-3-658-25326-4_7.
Yalçın, S., & Vural, H. (2022). Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Computers in Biology and Medicine, 105941, 149. doi:10.1016/j.compbiomed.2022.105941.
Nair, R. R., & Singh, T. (2019). Multi-sensor medical image fusion using pyramid-based DWT: A multi-resolution approach. IET Image Processing, 13(9), 1447–1459. doi:10.1049/iet-ipr.2018.6556.
Sultana, F., Sufian, A., & Dutta, P. (2020). Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey. Knowledge-Based Systems, 201–202. doi:10.1016/j.knosys.2020.106062.
Singh, S., Mittal, N., & Singh, H. (2022). Multifocus Image Fusion Based on Multiresolution Pyramid and Bilateral Filter. IETE Journal of Research, 68(4), 2476–2487. doi:10.1080/03772063.2019.1711205.
Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network DAN K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45–51. doi:10.30871/jaic.v4i1.2017.
Duarte, D., Nex, F., Kerle, N., & Vosselman, G. (2018). Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote Sensing, 10(10). doi:10.3390/rs10101636.
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2022). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523–3542. doi:10.1109/TPAMI.2021.3059968.
Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. Journal of Digital Imaging, 32(4), 582–596. doi:10.1007/s10278-019-00227-x.
Lyu, H., Fu, H., Hu, X., & Liu, L. (2019). Esnet: Edge-Based Segmentation Network for Real-Time Semantic Segmentation in Traffic Scenes. IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan. doi:10.1109/icip.2019.8803132.
Liu, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Lai, B., & Hao, Y. (2021). Paddleseg: A high-efficient development toolkit for image segmentation. arXiv preprint, arXiv:2101.06175. doi:10.48550/arXiv.2101.06175.
Ko, T. Y., & Lee, S. H. (2020). Novel method of semantic segmentation applicable to augmented reality. Sensors (Switzerland), 20(6), 1737. doi:10.3390/s20061737.
Ghosh, S., Das, N., Das, I., & Maulik, U. (2019). Understanding deep learning techniques for image segmentation. ACM Computing Surveys, 52(4), 1-35. doi:10.1145/3329784.
Soomro, T. A., Afifi, A. J., Gao, J., Hellwich, O., Zheng, L., & Paul, M. (2019). Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems with Applications, 134, 36–52. doi:10.1016/j.eswa.2019.05.029.
Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., & Ma, Z. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009–1023. doi:10.1016/j.ins.2019.10.014.
Phaladisailoed, T., & Numnonda, T. (2018). Machine Learning Models Comparison for Bitcoin Price Prediction. 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). doi:10.1109/iciteed.2018.8534911.
Ting, F. F., Tan, Y. J., & Sim, K. S. (2019). Convolutional neural network improvement for breast cancer classification. Expert Systems with Applications, 120, 103–115. doi:10.1016/j.eswa.2018.11.008.
Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J. J., & Qian, H. (2020). Fully hardware-implemented memristor convolutional neural network. Nature, 577(7792), 641–646. doi:10.1038/s41586-020-1942-4.
Michelucci, U. (2019). Advanced applied deep learning: Convolutional neural networks and object detection. Springer, Berkeley, United States. doi:10.1007/978-1-4842-4976-5.
Singh, H. (2019). Practical Machine Learning and Image Processing. Springer, Berkeley, United States. doi:10.1007/978-1-4842-4149-3.
Charniak, E. (2018). Intro to Deep Learning. MIT Press, Cambridge, Massachusetts, United States.
Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function in a convolution neural network model of facial expression recognition. Applied Sciences (Switzerland), 10(5), 1897. doi:10.3390/app10051897.
Jadon, S. (2020). A survey of loss functions for semantic segmentation. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). doi:10.1109/cibcb48159.2020.9277638.
Soomro, T. A., Afifi, A. J., Gao, J., Hellwich, O., Paul, M., & Zheng, L. (2018). Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss. IEEE Digital Image Computing: Techniques and Applications (DICTA), Canberra, ACT, Australia. doi:10.1109/dicta.2018.8615770.
Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H. S., & Zhang, L. (2021). Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr46437.2021.00681.
Xiao, Z., Liu, B., Geng, L., Zhang, F., & Liu, Y. (2020). Segmentation of Lung Nodules Using Improved 3D-UNet Neural Network. Symmetry, 12(11), 1787. doi:10.3390/sym12111787.
DOI: 10.28991/ESJ-2023-07-02-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sugiyarto Surono, Muhammad Rivaldi, DESHINTA ARROVA DEWI, Nursyiya Irsalinda