A Unified Power-Delay Model for GDI Library Cell Created Using New Mux Based Signal Connectivity Algorithm

Jebashini Ponnian, Senthil Pari, Uma Ramadass, Chee Pun Ooi

Abstract


The challenges of innovative IC technology typically come with various new design constraints in terms of circuit implementation, behaviour, scaling, and an accurate power-delay model to evaluate the circuit's performance. The circuit realization technique using GDI is gaining popularity because of its power and transistor utilization factors. Considering the core advantage of the GDI technique, this research presents the creation of new GDI library cells implemented using the MUX-based algorithm and its delay-power model. This research defines two goals; the former goal depicts the proposal of GDI library cells with full swing using a MUX-based signal connectivity model, and the later presents the mathematical delay-power model for the proposed GDI library cells. The number of attributes defined in the delay and power model incorporates minimum variables without sacrificing precision. It calculates the delay for simple RC networks and combinational circuits with multiple paths. The power model is given using the node activity factor and the power factor related to the internal node capacitances, wiring, and gate capacitances of the driving and receiving GDI nodes. The experimental results of this study, which conform to the specifications of the sub-micron library supported for the SilTerra 130 nm 6-metal layer fabricated for the CMOS n-well process, demonstrate that the proposed GDI library is indeed superior in terms of delay-transistor and power utilisation to PTL and CMOS technology. The simulation results reveal that there is 55 to 65 % improvement in terms of power and delay factor with the existing CMOS and PTL logic. The proposed delay model demonstrates that GDI cells require less logical effort than CMOS technology. The proposed power model shows that the node activity factor of the proposed GDI cells lies between 0.1 and 0.2, while in CMOS, it is between 0.1 and 0.3.

 

Doi: 10.28991/ESJ-2023-07-04-022

Full Text: PDF


Keywords


MUX-Based Connectivity; Gate Diffusion Technique; Logical Effort; Power Model; GDI Library.

References


Bisdounis, L., Nikolaidis, S., Koufopavlou, O., & Goutis, C. (1998). Switching response modeling of the CMOS inverter for sub-micron devices. Proceedings Design, Automation and Test in Europe. doi:10.1109/date.1998.655939.

Nabavi-Lishi, A., & Rumin, N. C. (1994). Inverter Models of CMOS Gates for Supply Current and Delay Evaluation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(10), 1271–1279. doi:10.1109/43.317470.

Bhattacharyya, A. B., & Ulman, S. (2002). PREDICTMOS MOSFET model and its application to submicron CMOS inverter delay analysis. Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design. doi:10.1109/aspdac.2002.994920.

Chandra, N., Yati, A. K., & Bhattacharyya, A. B. (2009). Extended-Sakurai-Newton MOSFET Model for Ultra-Deep-Submicrometer CMOS Digital Design. 2009 22nd International Conference on VLSI Design. doi:10.1109/vlsi.design.2009.48.

Conti, M., Orcioni, S., Turchetti, C., Soncini, G., & Zorzi, N. (1996). Analytical Device Modeling for MOS Analog IC’s Based on Regularization and Bayesian Estimation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(11), 1309–1322. doi:10.1109/43.543764.

Austin, B. L., Bowman, K. A., Xinghai Tang, & Meindl, J. D. (n.d.). A low power transregional MOSFET model for complete power-delay analysis of CMOS gigascale integration (GSI). Proceedings Eleventh Annual IEEE International ASIC Conference (Cat. No.98TH8372). doi:10.1109/asic.1998.722816.

Galup-Montoro, C., Schneider, M. C., & Pahim, V. C. (2005). Fundamentals of Next Generation Compact MOSFET Models. 2005 18th Symposium on Integrated Circuits and Systems Design. doi:10.1109/sbcci.2005.4286828.

Sutherland, I., Sproull, R. F., & Harris, D. (1999). Logical effort: designing fast CMOS circuits. Morgan Kaufmann, Burlington, United States.

Vemuru, S. R., & Scheinberg, N. (1994). Short-Circuit Power Dissipation Estimation for CMOS Logic Gates. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(11), 762–765. doi:10.1109/81.331533.

Hamoui, A. A., & Rumin, N. C. (2000). An analytical model for current, delay, and power analysis of submicron CMOS logic circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(10), 999–1007. doi:10.1109/82.877142.

Hauser, J. R. (2005). A new and improved physics-based model for MOS transistors. IEEE Transactions on Electron Devices, 52(12), 2640–2647. doi:10.1109/TED.2005.859623.

Bisdounis, L., & Koufopavlou, O. (2000). Short-circuit energy dissipation modeling for sub micrometer CMOS gates. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(9), 1350–1361. doi:10.1109/81.883330.

Consoli, E., Giustolisi, G., & Palumbo, G. (2011). An ultra-compact MOS model in nanometer technologies. 2011 20th European Conference on Circuit Theory and Design (ECCTD). doi:10.1109/ecctd.2011.6043403.

Nose, K., & Sakurai, T. (2000). Analysis and future trend of short-circuit power. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(9), 1023–1030. doi:10.1109/43.863642.

Sakurai, T., & Newton, A. R. (1990). Alpha-Power Law MOSFET Model and its Applications to CMOS Inverter Delay and Other Formulas. IEEE Journal of Solid-State Circuits, 25(2), 584–594. doi:10.1109/4.52187.

Verma, P., Sharma, A. K., Pandey, V. S., Noor, A., & Tanwar, A. (2016). Estimation of leakage power and delay in CMOS circuits using parametric variation. Perspectives in Science, 8, 760–763. doi:10.1016/j.pisc.2016.06.081.

Nandyala, V. R., & Mahapatra, K. K. (2016). A circuit technique for leakage power reduction in CMOS VLSI circuits. 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA). doi:10.1109/vlsi-sata.2016.7593044.

Kumar, A.P., Aditya, B.L.V.S.S., Sony, G., Prasanna, C., & Satish, A. (2019). Estimation of Power and Delay in CMOS Circuits Using Leakage Control Transistors. Recent Advances in Material Sciences. Lecture Notes on Multidisciplinary Industrial Engineering, Springer, Singapore. doi:10.1007/978-981-13-7643-6_61.

Xue, H., & Ren, S. (2017). Low power-delay-product dynamic CMOS circuit design techniques. Electronics Letters, 53(5), 302–304. doi:10.1049/el.2016.4173.

Saravanan, V., Anpalagan, A., & Woungang, I. (2015). An energy-delay product study on chip multi-processors for variable stage pipelining. Human-Centric Computing and Information Sciences, 5(1). doi:10.1186/s13673-015-0046-x.

Zhao, Q., Sun, W., Zhao, J., Feng, L., Xu, X., Liu, W., Guo, X., Liu, Y., & Yang, H. (2017). Noise Margin, Delay, and Power Model for Pseudo-CMOS TFT Logic Circuits. IEEE Transactions on Electron Devices, 64(6), 2635–2642. doi:10.1109/TED.2017.2695527.

Zhao, Q., Liu, Y., Zhao, J., Guo, X., Li, H., & Yang, H. (2016). Noise margin modeling for zero-VGS load TFT circuits and yield estimation. IEEE Transactions on Electron Devices, 63(2), 684–690. doi:10.1109/TED.2015.2506722.

Han, Z. (2021). The power-delay product and its implication to CMOS Inverter. Journal of Physics: Conference Series, 1754(1), 012131. doi:10.1088/1742-6596/1754/1/012131.

Ponnian, J., Pari, S., Ramadass, U., & Pun, O. C. (2021). A New Systematic GDI Circuit Synthesis Using MUX Based Decomposition Algorithm and Binary Decision Diagram for Low Power ASIC Circuit Design. Microelectronics Journal, 108, 104963. doi:10.1016/j.mejo.2020.104963.

Uma, R., Ponnian, J., & Dhavachelvan, P. (2017). New low power adders in Self Resetting Logic with Gate Diffusion Input Technique. Journal of King Saud University - Engineering Sciences, 29(2), 118–134. doi:10.1016/j.jksues.2014.03.006.

Uma, R., & Dhavachelvan, P. (2012). Modified Gate Diffusion Input Technique: A New Technique for Enhancing Performance in Full Adder Circuits. Procedia Technology, 6, 74–81. doi:10.1016/j.protcy.2012.10.010.

Ramadass, Uma., & Dhavachelvan, P. (2012). New low power delay element in self-resetting logic with modified Gated Diffusion Input technique. 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). doi:10.1109/smelec.2012.6417197.

Morgenshtein, A., Fish, A., & Wagner, I. A. (2002). Gate-diffusion input (GDI): A power-efficient method for digital combinatorial circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(5), 566–581. doi:10.1109/TVLSI.2002.801578.

Morgenshtein, A., Yuzhaninov, V., Kovshilovsky, A., & Fish, A. (2014). Full-swing gate diffusion input logic - Case-study of low-power CLA adder design. Integration, the VLSI Journal, 47(1), 62–70. doi:10.1016/j.vlsi.2013.04.002.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-022

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jebashini ponnian, Senthil pari, Ooi chee pun, Uma ramadoss