Comparison of Corrosion Behaviors of Bare Ti and TiO2

Ali Döner


In this study, titanium (Ti) surface was anodized by applying 60 voltages for two hours to form titanium dioxide (TiO2) with anodization method. After anodization procedure, comparison of corrosion behaviors of the bare titanium and TiO2 coated titanium was examined in 1 M KOH solution by using electrochemical methods such as anodic and cathodic current-potential curves and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and energy dispersive X-ray (EDX) were used to characterize bare Ti and anodically formed TiO2 surfaces. According to obtained results, Ti surface was smooth and compact. However, surface structure of TiO2 coated titanium was porous and nanotubes formed on the surface. This porous structure which has protective layer contributed to increase the corrosion resistance. Higher polarization resistance was obtained on porous TiO2 than that of bare titanium. Besides, this protective layer bore well against the alkaline corrosion during long-term immersion.


Corrosion; Titanium; Alkaline Solution.


Aladjem, A., M. Aucouturier, and P. Lacombe. “Anodic Oxidation and Stress Corrosion Cracking (SCC) of Titanium Alloys.” Journal of Materials Science 8, no. 6 (June 1973): 787–792. doi:10.1007/bf02397908.

Prusi, A., Lj. Arsov, Bala Haran, and Branko N. Popov. “Anodic Behavior of Ti in KOH Solutions.” Journal of The Electrochemical Society 149, no. 11 (2002): B491. doi:10.1149/1.1510134.

Cheshideh, Hamed, and Farzad Nasirpouri. “Cyclic Voltammetry Deposition of Nickel Nanoparticles on TiO2 Nanotubes and Their Enhanced Properties for Electro-Oxidation of Methanol.” Journal of Electroanalytical Chemistry 797 (July 2017): 121–133. doi:10.1016/j.jelechem.2017.05.024.

He, Xiaoshan, Chenguo Hu, Bin Feng, Buyong Wan, and Yongshu Tian. “Vertically Aligned TiO[sub 2] Nanorod Arrays as a Steady Light Sensor.” Journal of The Electrochemical Society 157, no. 11 (2010): J381. doi:10.1149/1.3486078.

Shaddad, M.N., Al-Mayouf, A.M., Ghanem, M.A., AlHoshan, M.S., Singh, J.P., Al-Suhybani, A.A. “Chemical Deposition and Electrocatalytic Activity of Platinum Nanoparticles Supported on TiO2 Nanotubes.” International Journal of Electrochemical Science 8 (2013) 2468 – 2478.

Han, Jingsong, Liming Yang, Lixia Yang, Wenjing Jiang, Xubiao Luo, and Shenglian Luo. “PtRu Nanoalloys Loaded on Graphene and TiO2 Nanotubes Co-Modified Ti Wire as an Active and Stable Methanol Oxidation Electrocatalyst.” International Journal of Hydrogen Energy 43, no. 15 (April 2018): 7338–7346. doi:10.1016/j.ijhydene.2018.02.176.

Xing, Li, Jianbo Jia, Yizhe Wang, Bailin Zhang, and Shaojun Dong. “Pt Modified TiO2 Nanotubes Electrode: Preparation and Electrocatalytic Application for Methanol Oxidation.” International Journal of Hydrogen Energy 35, no. 22 (November 2010): 12169–12173. doi:10.1016/j.ijhydene.2010.07.162.

Allam, Nageh K., Karthik Shankar, and Craig A. Grimes. “Photoelectrochemical and Water Photoelectrolysis Properties of Ordered TiO2 Nanotubes Fabricated by Ti Anodization in Fluoride-Free HCl Electrolytes.” Journal of Materials Chemistry 18, no. 20 (2008): 2341. doi:10.1039/b718580d.

Macak, Jan M., Hiroaki Tsuchiya, Luciano Taveira, Saule Aldabergerova, and Patrik Schmuki. “Smooth Anodic TiO2 Nanotubes.” Angewandte Chemie International Edition 44, no. 45 (November 18, 2005): 7463–7465. doi:10.1002/anie.200502781.

Paulose, Maggie, Karthik Shankar, Sorachon Yoriya, Haripriya E. Prakasam, Oomman K. Varghese, Gopal K. Mor, Thomas A. Latempa, Adriana Fitzgerald, and Craig A. Grimes. “Anodic Growth of Highly Ordered TiO2Nanotube Arrays to 134 Μm in Length.” The Journal of Physical Chemistry B 110, no. 33 (August 2006): 16179–16184. doi:10.1021/jp064020k.

Shankar, Karthik, Gopal K. Mor, Adriana Fitzgerald, and Craig A. Grimes. “Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2Nanotube Arrays in Formamide−Water Mixtures.” The Journal of Physical Chemistry C 111, no. 1 (January 2007): 21–26. doi:10.1021/jp066352v.

Baran, Evrim, and Birgül Yazici. “Effect of Different Nano-Structured Ag Doped TiO 2 -NTs Fabricated by Electrodeposition on the Electrocatalytic Hydrogen Production.” International Journal of Hydrogen Energy 41, no. 4 (January 2016): 2498–2511. doi:10.1016/j.ijhydene.2015.12.028.

Baran, Evrim, and Birgül Yazıcı. “Fabrication of TiO2-NTs and TiO2-NTs Covered Honeycomb Lattice and Investigation of Carrier Densities in I−/I3− Electrolyte by Electrochemical Impedance Spectroscopy.” Applied Surface Science 357 (December 2015): 2206–2216. doi:10.1016/j.apsusc.2015.09.212.

Jiang, Weimin, Huimin Cui, and Ye Song. “Electrochemical Corrosion Behaviors of Titanium Covered by Various TiO2 Nanotube Films in Artificial Saliva.” Journal of Materials Science 53, no. 21 (July 18, 2018): 15130–15141. doi:10.1007/s10853-018-2706-5.

Liao, Wenjuan, Jingwei Yang, He Zhou, Muthu Murugananthan, and Yanrong Zhang. “Electrochemically Self-Doped TiO2 Nanotube Arrays for Efficient Visible Light Photoelectrocatalytic Degradation of Contaminants.” Electrochimica Acta 136 (August 2014): 310–317. doi:10.1016/j.electacta.2014.05.091.

Kim, Choonsoo, Seonghwan Kim, Jusol Choi, Jaehan Lee, Jin Soo Kang, Yung-Eun Sung, Jihwa Lee, Wonyong Choi, and Jeyong Yoon. “Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization.” Electrochimica Acta 141 (September 2014): 113–119. doi:10.1016/j.electacta.2014.07.062.

Cao, Huazhen, Zhiwei Wang, Guangya Hou, and Guoqu Zheng. “TiO2 Nanotube-Supported Amorphous Ni–B Electrode for Electrocatalytic Oxidation of Methanol.” Surface and Coatings Technology 205, no. 3 (October 2010): 885–889. doi:10.1016/j.surfcoat.2010.08.037.

Prusi, A.R., and Lj.D. Arsov. “The Growth Kinetics and Optical Properties of Films Formed Under Open Circuit Conditions on a Titanium Surface in Potassium Hydroxide Solutions.” Corrosion Science 33, no. 1 (January 1992): 153–164. doi:10.1016/0010-938x(92)90024-w.

González, J.E.G, and J.C Mirza-Rosca. “Study of the Corrosion Behavior of Titanium and Some of Its Alloys for Biomedical and Dental Implant Applications.” Journal of Electroanalytical Chemistry 471, no. 2 (August 1999): 109–115. doi:10.1016/s0022-0728(99)00260-0.

Souto, R. “Degradation Characteristics of Hydroxyapatite Coatings on Orthopaedic TiAlV in Simulated Physiological Media Investigated by Electrochemical Impedance Spectroscopy.” Biomaterials 24, no. 23 (October 2003): 4213–4221. doi:10.1016/s0142-9612(03)00362-4.

Venugopalan, Ramakrishna, Jeffrey J Weimer, Michael A George, and Linda C Lucas. “The Effect of Nitrogen Diffusion Hardening on the Surface Chemistry and Scratch Resistance of Ti-6Al-4V Alloy.” Biomaterials 21, no. 16 (August 2000): 1669–1677. doi:10.1016/s0142-9612(00)00049-1.

Pan, J., D. Thierry, and C. Leygraf. “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application.” Electrochimica Acta 41, no. 7–8 (May 1996): 1143–1153. doi:10.1016/0013-4686(95)00465-3.

Assis, Sérgio Luiz de, Stephan Wolynec, and Isolda Costa. “Corrosion Characterization of Titanium Alloys by Electrochemical Techniques.” Electrochimica Acta 51, no. 8–9 (January 2006): 1815–1819. doi:10.1016/j.electacta.2005.02.121.

Full Text: PDF

DOI: 10.28991/esj-2019-01185


  • There are currently no refbacks.

Copyright (c) 2019 Ali Döner