Architectural Model and Modified Long Range Wide Area Network (LoRaWAN) for Boat Traffic Monitoring and Transport Detection Systems in Shallow Waters

Diaz Saputra, Ford Lumban Gaol, Edi Abdurachman, Dana Indra Sensuse, Tokuro Matsuo

Abstract


Monitoring the movement of boats in shallow waters requires a real-time monitoring system. However, for small-size wooden boats, they are still monitored manually, and data is unavailable in real time, which makes it difficult to effectively monitor them. The integration of IoT platforms with the boat monitoring system is a challenging task, especially in the transport system. This paper has the objective of developing an architectural model of a modified LoRaWAN-based boat monitoring system that is connected to a GPS-based mobile device and base station. The proposed architectural model is an integration of Bluetooth Low Energy (BLE) and LoRaWAN networks, which are also tested in real time to solve the boat traffic monitoring issues. The field tests with parameters of signal transmission, location coordinates, and position of the boats are also presented. The analysis result shows the proposed model is suitable for waters with high noise levels, especially in shallow water and delta rivers. The signal noise can be reduced by extracting the real-time data. In addition, signal interference can be minimized. The performance of this system is also compared to the reference system in real conditions, which shows an adequate correlation result. This proof of concept forms an important basis for deploying it for large-scale applications and commercialization capabilities.

 

Doi: 10.28991/ESJ-2023-07-04-011

Full Text: PDF


Keywords


LoRaWAN; Traffic Monitoring; Shallow Waters; Sensor; Network.

References


Aiello, G., Giallanza, A., & Mascarella, G. (2020). Towards shipping 4.0. A preliminary gap analysis. Procedia Manufacturing, 42, 24–29. doi:10.1016/j.promfg.2020.02.019.

Ubina, N. A., & Cheng, S. C. (2022). A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring and Management. Drones, 6(1), 12. doi:10.3390/drones6010012.

Carranza, C. D. U. (2021). Investigating soil moisture dynamics for improved applications of radar satellites in agricultural water management. PhD Thesis, Wageningen University and Research, Wageningen, Netherlands.

Vukonic, L., & Tomic, M. (2022). Ultrasonic Sensors in IoT Applications. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). doi:10.23919/mipro55190.2022.9803772.

Hassan, E. A. (2020). Maritime surveillance in Egypt: status of vessel traffic management system and opportunities for future improvements. Master Thesis, World Maritime University, Malmö, Sweden.

Sallum, E., Pereira, N., Alves, M., & Santos, M. (2020). Improving quality-of-service in Lora low-power wide-area networks through optimized radio resource management. Journal of Sensor and Actuator Networks, 9(1), 10. doi:10.3390/jsan9010010.

Mannino, A., Dejaco, M. C., & Re Cecconi, F. (2021). Building information modelling and internet of things integration for facility management-literature review and future needs. Applied Sciences (Switzerland), 11(7), 3062. doi:10.3390/app11073062.

Anand, S., & Vinodini Ramesh, M. (2021). An IoT Based Disaster Response Solution for Ocean Environment. Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking. doi:10.1145/3427477.3429273.

Gómez Escobar, J. A. (2019). Design of a reference architecture for an IoT sensor network. Design of a reference architecture for an IoT sensor network, International Center for Tropical Agriculture (CIAT), Palmira, Colombia.

Karagiannidis, P., & Themelis, N. (2021). Data-driven modelling of ship propulsion and the effect of data pre-processing on the prediction of ship fuel consumption and speed loss. Ocean Engineering, 222. doi:10.1016/j.oceaneng.2021.108616.

Ghodsinezhad, H. (2020). Remote cargo monitoring system specifications with smart technologies. Master Thesis, Åbo Akademi University, Turku, Finland.

Alsufyani, A., Alotaibi, Y., Almagrabi, A. O., Alghamdi, S. A., & Alsufyani, N. (2021). Optimized intelligent data management framework for a cyber-physical system for computational applications. Complex & Intelligent Systems, 9(3), 2957–2957. doi:10.1007/s40747-021-00511-w.

Nuchturee, C., Li, T., & Xia, H. (2020). Energy efficiency of integrated electric propulsion for ships – A review. Renewable and Sustainable Energy Reviews, 134, 110145. doi:10.1016/j.rser.2020.110145.

Pieters, O., Deprost, E., Van Der Donckt, J., Brosens, L., Sanczuk, P., Vangansbeke, P., De Swaef, T., De Frenne, P., & Wyffels, F. (2021). MIRRA: A Modular and Cost-Effective Microclimate Monitoring System for Real-Time Remote Applications. Sensors (Switzerland), 21(13), 4615. doi:10.3390/s21134615.

Betta, G., Cerro, G., Ferdinandi, M., Ferrigno, L., & Molinara, M. (2019). Contaminants detection and classification through a customized IoT-based platform: A case study. IEEE Instrumentation and Measurement Magazine, 22(6), 35–44. doi:10.1109/MIM.2019.8917902.

Tassetti, A. N., Galdelli, A., Pulcinella, J., Mancini, A., & Bolognini, L. (2022). Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors, 22(3), 839. doi:10.3390/s22030839.

Felski, A., & Zwolak, K. (2020). The Ocean-Going Autonomous Ship—Challenges and Threats. Journal of Marine Science and Engineering, 8(1), 41. doi:10.3390/jmse8010041.

Stranahan Jr, J. A. (2020). LoRaWAN device security and energy optimization. Master Thesis, Rowan University, Glassboro, United States.

Odukomaiya, A., Woods, J., James, N., Kaur, S., Gluesenkamp, K. R., Kumar, N., Mumme, S., Jackson, R., & Prasher, R. (2021). Addressing energy storage needs at lower cost via on-site thermal energy storage in buildings. Energy & Environmental Science, 14(10), 5315–5329. doi:10.1039/d1ee01992a.

Overmars, A., & Venkatraman, S. (2020). Towards a Secure and Scalable IoT Infrastructure: A Pilot Deployment for a Smart Water Monitoring System. Technologies, 8(4), 50. doi:10.3390/technologies8040050.

Gentile, A. F., Fazio, P., & Miceli, G. (2021). A Survey on the Implementation and Management of Secure Virtual Private Networks (VPNs) and Virtual LANs (VLANs) in Static and Mobile Scenarios. Telecom, 2(4), 430–445. doi:10.3390/telecom2040025.

Angelo, R. (2019). Secure Protocols and Virtual Private Networks: an Evaluation. Issues in Information Systems, 20(3), 37-46. doi:10.48009/3_iis_2019_37-46.

Pietrzykowski, Z., Wołejsza, P., Nozdrzykowski, Ł., Borkowski, P., Banaś, P., Magaj, J., Chomski, J., Mąka, M., Mielniczuk, S., Pańka, A., Hatłas-Sowińska, P., Kulbiej, E., & Nozdrzykowska, M. (2022). The autonomous navigation system of a sea-going vessel. Ocean Engineering, 261, 112104. doi:10.1016/j.oceaneng.2022.112104.

Rodríguez-Martín, J., Cruz-Pérez, N., & Santamarta, J. C. (2022). Maritime Climate in the Canary Islands and its Implications for the Construction of Coastal Infrastructures. Civil Engineering Journal, 8(1), 24-32. doi:10.28991/CEJ-2022-08-01-02.

Snapir, B., Waine, T. W., & Biermann, L. (2019). Maritime vessel classification to monitor fisheries with SAR: Demonstration in the North Sea. Remote Sensing, 11(3), 353. doi:10.3390/rs11030353.

Kumar, S., Duttagupta, S., Rangan, V. P., & Ramesh, M. V. (2020). Reliable network connectivity in wireless sensor networks for remote monitoring of landslides. Wireless Networks, 26(3), 2137–2152. doi:10.1007/s11276-019-02059-7.

Jabbar, W. A., Subramaniam, T., Ong, A. E., Shu’Ib, M. I., Wu, W., & de Oliveira, M. A. (2022). LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring. Internet of Things (Netherlands), 19, 100540. doi:10.1016/j.iot.2022.100540.

Kendall, M. S., Williams, B. L., Winship, A. J., Carson, M., Grissom, K., Rowell, T. J., Stanley, J., & Roberson, K. W. (2021). Winds, waves, warm waters, weekdays, and which ways boats are counted influence predicted visitor use at an offshore fishing destination. Fisheries Research, 237, 105879. doi:10.1016/j.fishres.2021.105879.

Matsumoto, H., Araki, E., Kimura, T., Fujie, G., Shiraishi, K., Tonegawa, T., Obana, K., Arai, R., Kaiho, Y., Nakamura, Y., Yokobiki, T., Kodaira, S., Takahashi, N., Ellwood, R., Yartsev, V., & Karrenbach, M. (2021). Detection of hydro-acoustic signals on a fiber-optic submarine cable. Scientific Reports, 11(1). doi:10.1038/s41598-021-82093-8.

Deif, A., & Vivek, T. (2022). Understanding AI Application Dynamics in Oil and Gas Supply Chain Management and Development: A Location Perspective. HighTech and Innovation Journal, 3, 1-14. doi:10.28991/HIJ-SP2022-03-01.

Shafiq, M., Gu, Z., Cheikhrouhou, O., Alhakami, W., & Hamam, H. (2022). The Rise of “internet of Things”: Review and Open Research Issues Related to Detection and Prevention of IoT-Based Security Attacks. Wireless Communications and Mobile Computing, 8669348. doi:10.1155/2022/8669348.

Sanchez-Iborra, R., Liaño, I. G., Simoes, C., Couñago, E., & Skarmeta, A. F. (2019). Tracking and monitoring system based on LoRa technology for lightweight boats. Electronics (Switzerland), 8(1), 15. doi:10.3390/electronics8010015.

Wei, T., Feng, W., Chen, Y., Wang, C. X., Ge, N., & Lu, J. (2021). Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet of Things Journal, 8(11), 8910–8934. doi:10.1109/JIOT.2021.3056091.

Bagwari, S., Gehlot, A., Singh, R., Priyadarshi, N., & Khan, B. (2022). Low-Cost Sensor-Based and LoRaWAN Opportunities for Landslide Monitoring Systems on IoT Platform: A Review. IEEE Access, 10, 7107–7127. doi:10.1109/ACCESS.2021.3137841.

Touil, H., Akkad, N. El, & Satori, K. (2021). Secure and guarantee QoS in a video sequence: A new approach based on TLS protocol to secure data and RTP to ensure real-time exchanges. International Journal of Safety and Security Engineering, 11(1), 59–68. doi:10.18280/ijsse.110107.

Sippo, M. (2021). Time-based expiration problem of the SSL/TLS certificates. University of Jyväskylä, Jyväskylä, Finland.

Ahmed, S., Rehman, M. U., Ishtiaq, A., Khan, S., Ali, A., & Begum, S. (2018). VANSec: Attack-Resistant VANET Security Algorithm in Terms of Trust Computation Error and Normalized Routing Overhead. Journal of Sensors, 2018. doi:10.1155/2018/6576841.

Sun, K., Cui, W., & Chen, C. (2021). Review of underwater sensing technologies and applications. Sensors, 21(23), 7849. doi:10.3390/s21237849.

Babanin, A. V., Rogers, W. E., de Camargo, R., Doble, M., Durrant, T., Filchuk, K., Ewans, K., Hemer, M., Janssen, T., Kelly-Gerreyn, B., Machutchon, K., McComb, P., Qiao, F., Schulz, E., Skvortsov, A., Thomson, J., Vichi, M., Violante-Carvalho, N., Wang, D., … Young, I. R. (2019). Waves and swells in high wind and extreme fetches, measurements in the Southern Ocean. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00361.

Laeseke, P., Schiller, J., Letschert, J., & Llanos, S. D. (2020). Theories, Vectors, and Computer Models: Marine Invasion Science in the Anthropocene. YOUMARES 9 - The Oceans: Our Research, Our Future, Springer, Cham, Switzerland. doi:10.1007/978-3-030-20389-4_10.

Daousis, S., Sarigiannis, G., Trigkas, A., Agavanakis, K., & Papageorgas, P. (2022). The Blue Bee Project: A Proposal for the Development of an Internet of Ships Sensing Network for Environmental Data Collection and Sharing. AIP Conference Proceedings, 2437(1), 20068. doi:10.1063/5.0092306.

Pulver, T. (2019). Hands-On Internet of Things with MQTT: Build connected IoT devices with Arduino and MQ Telemetry Transport (MQTT). Packt Publishing Ltd, Birmingham, United Kingdom.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-011

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Diaz Saputra, Ford Lumban Lumban Gaol, Edi Abdurachman, Dana Indra Sensuse, Tokuro Matsuo