Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification
Abstract
Doi: 10.28991/ESJ-2023-07-04-021
Full Text: PDF
Keywords
References
He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212, 106622. doi:10.1016/j.knosys.2020.106622.
Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3037–3054. doi:10.1109/TPAMI.2021.3051276.
Le, T. T., Fu, W., & Moore, J. H. (2020). Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics, 36(1), 250–256. doi:10.1093/bioinformatics/btz470.
Castelli, M., Pinto, D. C., Shuqair, S., Montali, D., & Vanneschi, L. (2022). The Benefits of Automated Machine Learning in Hospitality: A Step-By-Step Guide and AutoML Tool. Emerging Science Journal, 6(6), 1237–1254. doi:10.28991/ESJ-2022-06-06-02.
Märtens, M., & Izzo, D. (2019). Neural network architecture search with differentiable cartesian genetic programming for regression. Proceedings of the Genetic and Evolutionary Computation Conference Companion. doi:10.1145/3319619.3322003.
Bakurov, I., Castelli, M., Fontanella, F., & Vanneschi, L. (2019). A Regression-like Classification System for Geometric Semantic Genetic Programming. Proceedings of the 11th International Joint Conference on Computational Intelligence, Vienna, Austria. doi:10.5220/0008052900400048.
Bakurov, I., Castelli, M., Fontanella, F., Scotto di Freca, A., & Vanneschi, L. (2022). A novel binary classification approach based on geometric semantic genetic programming. Swarm and Evolutionary Computation, 69, 101028. doi:10.1016/j.swevo.2021.101028.
Conrad, F., Mälzer, M., Schwarzenberger, M., Wiemer, H., & Ihlenfeldt, S. (2022). Benchmarking AutoML for regression tasks on small tabular data in materials design. Scientific Reports, 12(1), 19350. doi:10.1038/s41598-022-23327-1.
Alsharef, A., Aggarwal, K., Sonia, Kumar, M., & Mishra, A. (2022). Review of ML and AutoML Solutions to Forecast Time-Series Data. Archives of Computational Methods in Engineering, 29(7), 5297–5311. doi:10.1007/s11831-022-09765-0.
Jin, H., Song, Q., & Hu, X. (2019). Auto-Keras: An Efficient Neural Architecture Search System. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330648.
Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3079–3090. doi:10.1109/TPAMI.2021.3067763.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2019). Auto-Sklearn: Efficient and Robust Automated Machine Learning. The Springer Series on Challenges in Machine Learning, 113–134. doi:10.1007/978-3-030-05318-5_6.
Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118–135. doi:10.1016/j.ins.2019.06.007.
Douzas, G., & Bacao, F. (2018). Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Systems with Applications, 91, 464–471. doi:10.1016/j.eswa.2017.09.030.
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284. doi:10.1109/TKDE.2008.239.
Santu, S. K. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., & Veeramachaneni, K. (2022). AutoML to Date and Beyond: Challenges and Opportunities. ACM Computing Surveys, 54(8), 1–36. doi:10.1145/3470918.
Bahri, M., Salutari, F., Putina, A., & Sozio, M. (2022). AutoML: state of the art with a focus on anomaly detection, challenges, and research directions. International Journal of Data Science and Analytics, 14(2), 113–126. doi:10.1007/s41060-022-00309-0.
Cerrada, M., Trujillo, L., Hernández, D. E., Correa Zevallos, H. A., Macancela, J. C., Cabrera, D., & Vinicio Sánchez, R. (2022). AutoML for Feature Selection and Model Tuning Applied to Fault Severity Diagnosis in Spur Gearboxes. Mathematical and Computational Applications, 27(1), 6. doi:10.3390/mca27010006.
Celik, B., Singh, P., & Vanschoren, J. (2022). Online AutoML: an adaptive AutoML framework for online learning. Machine Learning. doi:10.1007/s10994-022-06262-0.
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. Journal of Machine Learning Research, 23. doi:10.48550/arXiv.2007.04074.
Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2), 87–112. doi:10.1007/BF00175355.
Tran, B., Xue, B., & Zhang, M. (2019). Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recognition, 93, 404–417. doi:10.1016/j.patcog.2019.05.006.
Vanneschi, L., Castelli, M., Scott, K., & Trujillo, L. (2019). Alignment-based genetic programming for real life applications. Swarm and Evolutionary Computation, 44, 840–851. doi:10.1016/j.swevo.2018.09.006.
Moraglio, A., Krawiec, K., & Johnson, C.G. (2012). Geometric Semantic Genetic Programming. Parallel Problem Solving from Nature - PPSN XII, Lecture Notes in Computer Science, volume 7491, Springer, Berlin, Germany. doi:10.1007/978-3-642-32937-1_3.
Vanneschi, L., Castelli, M., & Silva, S. (2014). A survey of semantic methods in genetic programming. Genetic Programming and Evolvable Machines, 15(2), 195–214. doi:10.1007/s10710-013-9210-0.
Bakurov, I., Castelli, M., Gau, O., Fontanella, F., & Vanneschi, L. (2021). Genetic programming for stacked generalization. Swarm and Evolutionary Computation, 65, 100913. doi:10.1016/j.swevo.2021.100913.
Vanneschi, L., Castelli, M., Manzoni, L., & Silva, S. (2013). A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics. Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, volume 7831, Springer, Berlin, Germany. doi:10.1007/978-3-642-37207-0_18.
Krawiec, K., & Pawlak, T. (2013). Locally geometric semantic crossover: A study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines, 14(1), 31–63. doi:10.1007/s10710-012-9172-7.
Turner, A. J., & Miller, J. F. (2015). Introducing a cross platform open source Cartesian Genetic Programming library. Genetic Programming and Evolvable Machines, 16(1), 83–91. doi:10.1007/s10710-014-9233-1.
Turner, A. J., & Miller, J. F. (2017). Recurrent Cartesian Genetic Programming of Artificial Neural Networks. Genetic Programming and Evolvable Machines, 18(2), 185–212. doi:10.1007/s10710-016-9276-6.
Miller, J. F., & Smith, S. L. (2006). Redundancy and computational efficiency in Cartesian genetic programming. IEEE Transactions on Evolutionary Computation, 10(2), 167–174. doi:10.1109/TEVC.2006.871253.
Izzo, D., Biscani, F., & Mereta, A. (2017). Differentiable Genetic Programming. Genetic Programming. EuroGP 2017, Lecture Notes in Computer Science, vol 10196. Springer, Cham, Switzerland. doi:10.1007/978-3-319-55696-3_3.
Guyon, I. (2003). Design of experiments of the NIPS 2003 variable selection benchmark. NIPS 2003 workshop on feature extraction and feature selection, 11-13 December, 2003, Whistler, United States.
Haynes, W. (2013). Wilcoxon Rank Sum Test. Encyclopedia of Systems Biology, 2354–2355, Springer, New York, United States. doi:10.1007/978-1-4419-9863-7_1185.
Fonseca, J., Douzas, G., & Bacao, F. (2021). Increasing the effectiveness of active learning: Introducing artificial data generation in active learning for land use/land cover classification. Remote Sensing, 13(13), 2619. doi:10.3390/rs13132619.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
DOI: 10.28991/ESJ-2023-07-04-021
Refbacks
- There are currently no refbacks.