The Effect of Sodium Humate Feed Additives in Diets for Holstein Breed Heifers

Daina Kairiša, Anda Valdovska, Ilze Vircava, Irina Pilvere, Liga Proskina, Daiga Gāliņa, Guntis Gutmanis, Sandijs Mešķis

Abstract


The research aim is to examine the possibilities of including the sodium humate (NaHum) additive derived from freshwater sapropel in feed to identify its effects on growth performance, promote haematopoiesis, and modulate the microbiota of the intestinal tract. The research was done under production conditions, complying with Latvian and European Union legislation on the keeping, feeding, and welfare of farm animals. The research had three replications, and for each of them, two groups of Holstein breeding heifers were established: control (3xn=7) and research (3xn=7). The duration of each replication was 9 days in the adaptation period and 105 days in the research period. The heifers of the research group received the NaHum solution additive with feed from the 1st to 35th day (stage 1) at an intake rate of 0.4 mL/kg of live weight, from the 36th to 70th day (stage 2) at an intake rate of 0.5 mL/kg of live weight, and from the 71st to 105th day (stage 3) at an intake rate of 0.6 mL/kg of live weight. The breeding heifers of the research group, receiving NaHum at an intake rate of 0.6 mL/kg of live weight, achieved a significantly higher live weight gain at stage 3 and an overall numerically higher live weight gain (by 4.8 kg) than the control group during the research period. Consequently, a significantly higher relative growth ratio (0.334) was found in the research group at stage 3, which was 0.028 higher than that in the control group. The Lactobacillus spp. count in faecal samples was steady at the end of the research; a significant difference was found between groups, with the average ranging between 6.95 (control group) and 8.49 log CFU/g (research (NaHum) group). The novelty of the research is that it was scientifically proven that feeding the NaHum additive derived from freshwater lake sapropel to the breeding Holstein heifers up to 5 months of age increased their feed intake and live weight gain, as well as activity and health.

 

Doi: 10.28991/ESJ-2023-07-04-023

Full Text: PDF


Keywords


Sodium Humate; Feed Additives; Growth Performance; Blood Parameters; Microbiota; Intestinal Tract; Breeding Heifers.

References


Ranganathan, J., Waite, R., Searchinger, T., & Hanson, C. (2018). How to sustainably feed 10 billion people by 2050, in 21 charts. Word Resources Institute., Washington, United States.

Dukeshire, S., Garbes, R., Kennedy, C., Boudreau, A., & Osborne, T. (2011). Beliefs, attitudes, and propensity to buy locally produced food. Journal of Agriculture, Food Systems, and Community Development, 1–11. doi:10.5304/jafscd.2011.013.008.

Tichenor, N. E., Peters, C. J., Norris, G. A., Thoma, G., & Griffin, T. S. (2017). Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. Journal of Cleaner Production, 142, 1619–1628. doi:10.1016/j.jclepro.2016.11.138.

Guyader, J., Janzen, H. H., Kroebel, R., & Beauchemin, K. A. (2016). Production, management, and environment symposium: Forage use to improve environmental sustainability of ruminant production. Journal of Animal Science, 94(8), 3147–3158. doi:10.2527/jas2015-0141.

García-Díez, J., Gonçalves, C., Grispoldi, L., Cenci-Goga, B., & Saraiva, C. (2021). Determining food stability to achieve food security. Sustainability (Switzerland), 13(13), 7222. doi:10.3390/su13137222.

Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/3/i3437e/i3437e.pdf (accessed on April 2023).

Official Journal of the European Union (2021). Opinion of the European Committee of the Regions – Action Plan for Critical Raw Materials (2021/C 175/03), COM (2020) 474 final, EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A52020DC0474 (accessed on April 2023).

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1–3), 57–69. doi:10.1016/j.livsci.2010.02.011.

Food and Agriculture Organization of the United Nations (FAO). (2020). In brief. Five practical actions towards resilient, low-carbon livestock systems. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/3/cb2007en/CB2007EN.pdf (accessed on April 2023).

Ministry of Agriculture of the Republic of Latvia (2022). Latvian CAP strategic plan for 2023-2027, version 1.2, approved by the European Commission on 11.11.2022. No. C (2022)7899, 1001 p., approved by the European Commission on 11/11/2022, Ministry of Agriculture of the Republic of Latvia, Riga, Latvia.

Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447–465. doi:10.1098/rstb.2007.2163.

Hemathilake, D. M. K. S., & Gunathilake, D. M. C. C. (2021). Agricultural productivity and food supply to meet increased demands. Future Foods: Global Trends, Opportunities, and Sustainability Challenges. Academic Press, Cambridge, United States. doi:10.1016/B978-0-323-91001-9.00016-5.

Sands, R. D., Jones, C. A., & Marshall. E. (2014). Global Drivers of Agricultural Demand and Supply, ERR-174, Economic Research Service, United States of Department of Agriculture, Washington, United States. Available online: https://www.ers.usda.gov/webdocs/publications/45272/49035_err174.pdf?v=0 (accessed on April 2023).

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110(52), 20888–20893. doi:10.1073/pnas.1308149110.

Sasu-Boakye, Y., Cederberg, C., & Wirsenius, S. (2014). Localising livestock protein feed production and the impact on land use and greenhouse gas emissions. Animal, 8(8), 1339–1348. doi:10.1017/S1751731114001293.

Crosson, P., Shalloo, L., O’Brien, D., Lanigan, G. J., Foley, P. A., Boland, T. M., & Kenny, D. A. (2011). A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology, 166–167, 29–45. doi:10.1016/j.anifeedsci.2011.04.001.

Costa, A., Boselli, C., & De Marchi, M. (2021). Effect of body weight and growth in early life on the reproductive performances of holstein heifers. Agriculture (Switzerland), 11(2), 1–9. doi:10.3390/agriculture11020159.

Wang, D., You, Z., Du, Y., Zheng, D., Jia, H., & Liu, Y. (2022). Influence of Sodium Humate on the Growth Performance, Diarrhea Incidence, Blood Parameters, and Fecal Microflora of Pre-Weaned Dairy Calves. Animals, 12(1), 123. doi:10.3390/ani12010123.

Zhang, H., Feng, J., Zhu, W., Liu, C., & Gu, J. (2000). Bacteriostatic effects of cerium-humic acid complex: An experimental study. Biological Trace Element Research, 73(1), 29–36. doi:10.1385/BTER:73:1:29.

European Commission. (2020). A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food System. Com-Munication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions, COM (2020) 381 Final, European Commissions, Brussels, Belgium. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0381&from=EN (accessed on April 2023).

Shevchenko, V. P., Starodymova, D. P., Vorobyev, S. N., Aliev, R. A., Borilo, L. P., Kolesnichenko, L. G., Lim, A. G., Osipov, A. I., Trufanov, V. V., & Pokrovsky, O. S. (2022). Trace Elements in Sediments of Two Lakes in the Valley of the Middle Courses of the Ob River (Western Siberia). Minerals, 12(12). doi:10.3390/min12121497.

Terekhova, E. N., Belskaya, O. B., Trenikhin, M. V., Babenko, A. V., Muromtzev, I. V., & Likholobov, V. A. (2023). Nickel catalysts based on carbon-mineral supports derived from sapropel for hydroliquefaction of sapropel organic matter. Fuel, 332. doi:10.1016/j.fuel.2022.126300.

Grigorev, M. F., Grigoreva, A. I., Ivanov, A. I., & Gogoleva, I. V. (2021). The effectiveness of organomineral feed additives from local raw materials in feeding young horses in Yakutia. IOP Conference Series: Earth and Environmental Science, 848(1), 12004. doi:10.1088/1755-1315/848/1/012004.

Sidorov, A. A., Grigorev, M. F., Grigoreva, A. I., & Kyundyaytseva, A. N. (2020). The influence of non-traditional feed additives on the productivity of horses in Yakutia. IOP Conference Series: Earth and Environmental Science, 548(4), 042007. doi:10.1088/1755-1315/548/4/042007.

Yurina, N., Khorin, B., Yurin, D., Semenenko, M., & Kuzminova, E. (2020). The effect of feeding a natural feed additive on the performance of broiler chickens. E3S Web of Conferences, 175, 04001. doi:10.1051/e3sconf/202017504001.

Stankevica, K., Vincevica-Gaile, Z., & Klavins, M. (2019). Role of humic substances in agriculture and variability of their content in freshwater lake sapropel. Agronomy Research, 17(3), 850–861. doi:10.15159/AR.19.094.

Radchikov, V. F., Sapsaleva, T. L., Besarab, G. V., Slozhenkina, M. I., Mosolov, A. A., & Gorlov, I. F. (2022). Ensuring the environmental safety of milk production through the use of non-traditional feed. IOP Conference Series: Earth and Environmental Science, 981(2). doi:10.1088/1755-1315/981/2/022088.

Līcīte, I., Popluga, D., Rivža, P., Lazdiņš, A., & Meļņiks, R. (2022). Nutrient-rich organic soil management patterns in light of climate change policy. Civil Engineering Journal, 8(10), 2290-2304. doi:10.28991/CEJ-2022-08-10-017.

Snowball, I., Zillén, L., & Sandgren, P. (2002). Bacterial magnetite in Swedish varved lake-sediments: A potential bio-marker of environmental change. Quaternary International, 88(1), 13–19. doi:10.1016/S1040-6182(01)00069-6.

Akinyemi, F. O., Hutchinson, S. M., Mîndrescu, M., & Rothwell, J. J. (2013). Lake sediment records of atmospheric pollution in the Romanian Carpathians. Quaternary International, 293, 105–113. doi:10.1016/j.quaint.2012.01.022.

Bakrač, K., Ilijanić, N., Miko, S., & Hasan, O. (2018). Evidence of sapropel S1 formation from Holocene lacustrine sequences in Lake Vrana in Dalmatia (Croatia). Quaternary International, 494, 5–18. doi:10.1016/j.quaint.2018.06.010.

Pan, Y., Petersen, N., Davila, A. F., Zhang, L., Winklhofer, M., Liu, Q., Hanzlik, M., & Zhu, R. (2005). The detection of bacterial magnetite in recent sediments of Lake Chiemsee (southern Germany). Earth and Planetary Science Letters, 232(1–2), 109–123. doi:10.1016/j.epsl.2005.01.006.

Paasche, Ø., Løvlie, R., Dahl, S. O., Bakke, J., & Nesje, A. (2004). Bacterial magnetite in lake sediments: Late glacial to Holocene climate and sedimentary changes in northern Norway. Earth and Planetary Science Letters, 223(3–4), 319–333. doi:10.1016/j.epsl.2004.05.001.

Tretjakova, R., Martinovs, A., Avisane, M., & Kolcs, G. (2018). Lake blue clay - Sapropel - Flax shive briquettes for water absorption and desorption. Agronomy Research, 16(Special Issue 1), 1266–1277. doi:10.15159/AR.18.091.

Pleiksnis, S., Skujans, J., Visockis, E., & Pulkis, K. (2016). Increasing fire proofness of sapropel and hemp shive insulation material. 15th International Scientific Conference Engineering for Rural Development, 25-27 May, 2016, Latvia University of Agriculture, Jelgava, Latvia.

Mikulionienė, S., & Baležentienė, L. (2009). Chemical composition and influence of sapropel on live weight gains in fattening pigs. Veterinarija ir zootechnika, (48), 37-44.

Mikulioniene, S., & Baležentiene, L. (2012). Effectiveness and potential usefulness of dietary supplementation with sapropel on ducklings and goslings growth and quality indices. Veterinarija Ir Zootechnika, 60(82), 45–51.

Ignatavičius, G., Satkūnas, J., Grigienė, A., Nedveckytė, I., Hassan, H. R., & Valskys, V. (2022). Heavy metals in sapropel of lakes in suburban territories of vilnius (Lithuania): Reflections of paleoenvironmental conditions and anthropogenic influence. Minerals, 12(1), 17. doi:10.3390/min12010017.

Mironova, N., Mateyuk, O., Biletska, H., Shevchenko, S., Kazimirova, L., Artamonov, B., ... & Bloshchynskyi, I. (2022). Parametric Assessment of Macrophytes Ecological Niches in Solving Problems of Sand Quarry Lakes Phytomelioration. Journal of Human, Earth, and Future, 3(4), 423-429. doi:10.28991/HEF-2022-03-04-02.

Obuka, V., Sinka, M., Nikolajeva, V., Kostjukova, S., Ozola-Davidane, R., & Klavins, M. (2021). Microbiological Stability of Bio-Based Building Materials. Journal of Ecological Engineering, 22(4), 296–313. doi:10.12911/22998993/134033.

Pleiksnis, S., Sinka, M., & Sahmenko, G. (2015). Experimental justification for sapropel and hemp shives use as thermal insulations in Latvia. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1, 175. doi:10.17770/etr2015vol1.211.

Vanadziòð, I., Mârtiòsone, I., Kïaviòa, A., Komarovska, L., Auce, A., Dobkevièa, L., & Sprûdþa, D. (2021). Sapropel – Mining Characteristics and Potential Use in Medicine. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 76(2), 188–197. doi:10.2478/prolas-2022-0029.

Daugviliene, D., Burba, A., & Bakšiene, E. (2014). Changes of sandy loam Cambisol properties at application for calcareous sapropel and limestone. Journal of Food, Agriculture and Environment, 12(1), 491–495.

Degola, L., & Latvietis, J. (2001). Influence of a mineral additive-made of Lake sapropel-on growing pigs performance, nutrient digestibility, carcass traits and mineral composition of muscle and lard tissues. Landbauforschung Volkenrode. Sonderheft, 297.

Bultka, V., & Latvietis, J. (2001). Lake sapropel additive into layer feed. Landbauforsch, Volkenrode, Braunschweig, 23, 304-308.

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. Research in Agricultural & Applied Economics. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

Pilvere, I., Nipers, A., Krievina, A., Upite, I., & Kotovs, D. (2022). LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers. Agriculture (Switzerland), 12(5), 705. doi:10.3390/agriculture12050705.

Atzinums Nr. 5-04/2/2022. (2022). Opinion no. 5-04/2/2022 regarding the environmental impact assessment report of the mining of sapropel in Biža lake, Andrupene parish, Krāslava county. State Office of Environmental Supervision, Rīga, Latvia.

Soteriades, A. D., Foskolos, A., Styles, D., & Gibbons, J. M. (2020). Maintaining production while reducing local and global environmental emissions in dairy farming. Journal of Environmental Management, 272, 111054. doi:10.1016/j.jenvman.2020.111054.

Becker, G. (1986). Special Issue of Humic Substances Research from the Third International Meeting of IHSS, Oslo, Norway, August 4-8. The Science of the Total Environment, Elsevier Science Publishers, Amsterdam, Netherlands.

Law of the Republic of Latvia. (2007). On the European Convention for the Protection of Animals Kept for Farming Purposes and the Protocol". Latvian Herald, 72, 05/05/2007; Herald of the Parliament and the Cabinet of the Republic of Latvia, Riga, Latvia. Available online: https://likumi.lv/ta/id/156701-par-eiropas-konvenciju-par-lauksaimniecibas-dzivnieku-aizsardzibu-un-tas-protokolu (accessed on April 2023).

Official Journal of the European Union. (2010). Directive 2010/63/Eu of The European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). OV, L 276, 20.10.2010., 33-79, European Union, Brussels, Belgium. Available online: http://data.europa.eu/eli/dir/2010/63/oj (accessed on April 2023).

LR Agricultural Data Center. (2023). Agricultural Data Centre of the Republic of Latvia. Milk Monitoring Results. Agricultural Data Center. (In Latvian). Available online: https://registri.ldc.gov.lv/lv/parraudziba (accessed on April 2023).

Regulation of the Cabinet of the Republic of Lithuania No. 491. (2003). Calf Welfare Requirements", Latvian Herald, 121, 05/09/2003. Riga, Latvia. Available: https://likumi.lv/ta/id/78646-telu-labturibas-prasibas (accessed on May 2023).

Radchikov, V. F., Tzai, V. P., Kot, A. N., Sapsaleva, T. L., Besarab, G. V., Gutyj, B. V., Karpovskyi, V. I., & Trokoz, V. O. (2021). Natural biologically active additive in feeding calves. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(3), 28–32. doi:10.32718/ujvas4-3.05.

Perrett, T., Wildman, B. K., Jim, G. K., Vogstad, A. R., Fenton, R. K., Hannon, S. J., Schunicht, O. C., Abutarbush, S. M., & Booker, C. W. (2008). Evaluation of the efficacy and cost-effectiveness of melengestrol acetate in feedlot heifer calves in Western Canada. Veterinary Therapeutics, 9(3), 223–240.

Lima, N. L. L., Ribeiro, C. R. de F., de Sá, H. C. M., Leopoldino Júnior, I., Cavalcanti, L. F. L., Santana, R. A. V., Furusho-Garcia, I. F., & Pereira, I. G. (2017). Economic analysis, performance, and feed efficiency in feedlot lambs. Revista Brasileira de Zootecnia, 46(10), 821–829. doi:10.1590/S1806-92902017001000005.

Latvian Institute of Humic Substances. (2020). Catalog of professional products 2020. Latvian Institute of Humic Substances, Riga, Latvia Available online: https://greenok.lv/wp-content/uploads/2020/09/2020_Catalog_of_professional_ENG.pdf (accessed on April 2023).

Karaoglu, M., Macit, M., Esenbuga, N., Durdag, H., Turgut, L., & Cevdet Bilgin, Ö. (2004). Effect of supplemental humate at different levels on the growth performance, slaughter and carcass traits of broilers. International Journal of Poultry Science, 3(6), 406–410. doi:10.3923/ijps.2004.406.410.

Wang, D., He, Y., Liu, K., Deng, S., Fan, Y., & Liu, Y. (2022). Sodium Humate Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Dysfunction via Alteration of Intestinal Microbiota and Metabolites in Mice. Frontiers in Microbiology, 13. doi:10.3389/fmicb.2022.809086.

Peña-Méndez, E. M., Havel, J., & Patočka, J. (2005). Humic substance - Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine, 3(1), 13–24. doi:10.32725/jab.2005.002.

Leader, J. W., Dunne, E. J., & Reddy, K. R. (2008). Phosphorus Sorbing Materials: Sorption Dynamics and Physicochemical Characteristics. Journal of Environmental Quality, 37(1), 174–181. doi:10.2134/jeq2007.0148.

Nieweś, D., Huculak-Mączka, M., Braun-Giwerska, M., Marecka, K., Tyc, A., Biegun, M., Hoffmann, K., & Hoffmann, J. (2022). Ultrasound-Assisted Extraction of Humic Substances from Peat: Assessment of Process Efficiency and Products’ Quality. Molecules, 27(11), 3413. doi:10.3390/molecules27113413.

Stankevica, K., Vincevica-Gaile, Z., & Klavins, M. (2016). Freshwater sapropel (Gyttja): Its description, properties and opportunities of use in contemporary agriculture. Agronomy Research, 14(3), 929–947.

Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research, 10, 1-7.

Obuka, V., Boroduskis, M., Ramata-Stunda, A., Klavins, L., & Klavins, M. (2018). Sapropel processing approaches towards high added-value products. Agronomy Research, 16(Special Issue 1), 1142–1149. doi:10.15159/AR.18.119.

Trckova, M., Matlova, L., Hudcova, H., Faldyna, M., Zraly, Z., Dvorska, L., Beran, V., & Pavlik, I. (2005). Peat as a feed supplement for animals: A review. Veterinarni Medicina, 50(8), 361–377. doi:10.17221/5635-VETMED.

Gomez-Rosales, S., & De L Angeles, M. (2015). Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens. Asian-Australasian Journal of Animal Sciences, 28(2), 215–222. doi:10.5713/ajas.14.0321.

Písaříková, B., Zralý, Z., & Herzig, I. (2010). The effect of dietary sodium humate supplementation on nutrient digestibility in growing pigs. Acta Veterinaria Brno, 79(3), 349–353. doi:10.2754/avb201079030349.

Yörük, M. A., Gül, M., Hayirli, A., & Macit, M. (2004). The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poultry Science, 83(1), 84–88. doi:10.1093/ps/83.1.84.

KHUMIC. (2021). Why use sodium humate in livestock breeding. Juyimogen Business Center, Zhengzhou, China, Available online: https://www.khumic.com/news/Why_use_sodium_humate_in_livestock_breeding.html (accessed on April 2023).

Raketsky, V. A., Nametov, A. M., Sozinov, V. A., & Baisakalov, A. A. (2021). Increasing the efficiency of the herd reproduction system by introducing innovative technologies into dairy farming in Northern Kazakhstan. Veterinary World, 3028–3037. doi:10.14202/vetworld.2021.3028-3037.

Crowe, M. A., Hostens, M., & Opsomer, G. (2018). Reproductive management in dairy cows - The future. Irish Veterinary Journal, 71(1). doi:10.1186/s13620-017-0112-y.

Le Cozler, Y., Jurquet, J., & Bedere, N. (2019). Effects of feeding treatment on growth rates and consequences on performance of primiparous Holstein dairy heifers. bioRxiv, 760082. doi:10.1101/760082.

Semenova, Z. V., Litvintseva, M. A., Yevstafiev, S. N., & Sandimirov, I. V. (2005). The sapropel of Lake Ochaul and its mineral composition. Solid Fuel Chemistry, 39(2), 8–12.

Yüca, S., & Gül, M. (2021). Effect of adding humate to the ration of dairy cows on yield performance. Ankara Universitesi Veteriner Fakultesi Dergisi, 68(1), 7–14. doi:10.33988/auvfd.626066.

Kholif, A. E., Matloup, O. H., EL-Bltagy, E. A., Olafadehan, O. A., Sallam, S. M. A., & El-Zaiat, H. M. (2021). Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livestock Science, 253, 104699. doi:10.1016/j.livsci.2021.104699.

de Lourdes Angeles, M., Gómez-Rosales, S., & Téllez-Isaias, G. (2022). Mechanisms of Action of Humic Substances as Growth Promoters in Animals. Humus and Humic Substances - Recent Advances, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.105956.

Trckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2017). Effects of sodium humate and zinc oxide used in prophylaxis of post-weaning diarrhoea on the health, oxidative stress status and fatty acid profile in weaned piglets. Veterinarni Medicina, 62(1), 16–28. doi:10.17221/70/2016-vetmed.

Ježek, J., Nemec, M., Starič, J., & Klinkon, M. (2011). Age related changes and reference intervals of haematological variables in dairy calves. Bulletin of the Veterinary Institute in Pulawy, 55(3), 471–478.

Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; & Constable, P.D. (2007). Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats (10th Edition), Elsevier Saunders, London, United Kingdom.

Kelada, S. N. P., Aylor, D. L., Peck, B. C. E., Ryan, J. F., Tavarez, U., Buus, R. J., Miller, D. R., Chesler, E. J., Threadgill, D. W., Churchill, G. A., Pardo-Manuel de Villena, F., & Collins, F. S. (2012). Genetic Analysis of Hematological Parameters in Incipient Lines of the Collaborative Cross. G3 Genes | Genomes | Genetics, 2(2), 157–165. doi:10.1534/g3.111.001776.

Hoffman, W., Lakkis, F. G., & Chalasani, G. (2016). B cells, antibodies, and more. Clinical Journal of the American Society of Nephrology, 11(1), 137–154. doi:10.2215/CJN.09430915.

Görgens, A., Radtke, S., Horn, P., & Giebel, B. (2013). New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle, 12(22), 3478–3482. doi:10.4161/cc.26900.

Reece, W. O. (1980). Acid-base balance and selected hematologic, electrolyte, and blood chemical variables in calves: milk-fed vs conventionally fed. American Journal of Veterinary Research, 41(1), 109–113.

Domínguez-Negrete, A., Gómez-Rosales, S., Angeles, M. de L., López-Hernández, L. H., Souza, T. C. R. De, López-García, Y., Zavala-Franco, A., & Téllez-Isaias, G. (2019). Effect of the addition of humic substances as growth promoter in broiler chickens under two feeding regimens. Animals, 9(12). doi:10.3390/ani9121101.

Trckova, M., Lorencova, A., Hazova, K., & Sramkova Zajacova, Z. (2015). Prophylaxis of post-weaning diarrhoea in piglets by zinc oxide and sodium humate. Veterinární Medicína, 60(7), 351–360. doi:10.17221/8382-vetmed.

Heyman, M., & Ménard, S. (2002). Probiotic microorganisms: how they affect intestinal pathophysiology. Cellular and Molecular Life Sciences (CMLS), 59(7), 1151–1165. doi:10.1007/s00018-002-8494-7.

Abu-Tarboush, H. M., Al-Saiady, M. Y., & Keir El-Din, A. H. (1996). Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Animal Feed Science and Technology, 57(1–2), 39–49. doi:10.1016/0377-8401(95)00850-0.

Stordalen, G.; & Fan, Sh. (2022). The Global Food System under Radical Change. Global food policy report: Climate change and food systems. Washington, DC: International Food Policy Research Institute (IFPRI), 1-189.doi:10.2499/9780896294257.

Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. doi:10.1126/science.1239402.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-023

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Daina Kairisa, Anda Valdovska, Ilze Vircava, Irina Pilvere, Liga Proskina, Daiga Galina, Guntis Gutmanis, Sandijs Meskis