Wind Energy Assessment Using Weibull Distribution with Different Numerical Estimation Methods: A Case Study

Mutaz A. Alanazi, Mohammed Aloraini, Muhammad Islam, Saleh Alyahya, Sheroz Khan


The demand for electrical energy is increasing every day, which is one of the critical challenges facing the world today. Hence, the necessity of turning to clean renewable energy sources that are not harmful to the environment as an alternative to the traditional generation based on fossil fuels has become more important than ever before. Wind power is one of the renewable sources that provides a clean solution to generate electricity. In this context, the Kingdom of Saudi Arabia announces renewable energy projects to generate 9 GW from wind in 2032. Hence, the aim of this paper is to investigate the most suitable method of Weibull parameter estimation in order to predict wind characteristics and employ it for wind energy assessment in the Qassim region located in the center of the country. In this study, wind data is collected from NASA's forecasts of global energy resources for 2010–2015 based on their availability at altitudes of 10m and 50m and analyzed by using six different methods for Weibull parameter estimation: the graphical method (GM), standard deviation method (SDM), energy pattern factor method (EPF), moment method (MM), alternative maximum likelihood method (AMLM), and novel energy pattern factor method (NEPF). The efficiency of each method is tested by calculating the root mean square error (RMSE) and the relative wind power density error (RPDE). The comparison shows that the most appropriate method for estimating wind power density in the country is the Moment Method (MM), with the lowest RPDE ratio equal to 0.2018%. It has been found that the wind power density in the Qassim region falls into the class 1 category, as it is less than 100 W/m2 at a height of 10m and less than 200 W/m2at an altitude of 50m. The results show the region is only suitable for small off-grid projects.


Doi: 10.28991/ESJ-2023-07-06-024

Full Text: PDF


Energy Utilization; Energy Conversion; Power Conversion Efficiency; Weibull Distribution; Weibull Parameters; Energy Efficiency.


Abdel Wahid, T., & Shahein, R. (2022). On Kinetic and Irreversible Thermodynamic Treatments of a Rarefied Gaseous Plasma Bounded by a Moving Plate. Egyptian Journal of Pure and Applied Science, 59(2), 63–74. doi:10.21608/ejaps.2022.113392.1017.

Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., El-Yazied, A. A., Alabdallah, N. M., Hikal, M., Mohamed, M. H. M., Ibrahim, M. F. M., & Hasan, M. M. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309–320. doi:10.1016/j.plaphy.2021.08.002.

Jreisat, A., & Al-Mohamad, S. (2022). Bank Efficiency and Oil Price Volatility: A View from the GCC Countries. Emerging Science Journal, 6(3), 519-529. doi:10.28991/ESJ-2022-06-03-07.

General Authority for Statistics (2020). Electricity Energy Statistics, 2020. Riyadh, Kingdom of Saudi Arabia. Available online: (accessed on November 2023).

AlGhamdi, S. A., Abdel-Latif, A. M., Abd El-Kawi, O. S., & Abouelatta, O. B. (2022). Analysis of Wind Speed Data and Wind Energy Potential for Seven Selected Locations in KSA. Journal of Power and Energy Engineering, 10(04), 1–26. doi:10.4236/jpee.2022.104001.

Carnevale, E. A., Lombardi, L., & Zanchi, L. (2016). Wind and solar energy: a comparison of costs and environmental impacts. Advances in Energy Research, 4(2), 121–146. doi:10.12989/eri.2016.4.2.121.

Jung, C., & Schindler, D. (2019). Wind speed distribution selection – A review of recent development and progress. Renewable and Sustainable Energy Reviews, 114, 109290. doi:10.1016/j.rser.2019.109290.

General Authority for Statistics (2020). Renewable Energy Statistics, 2020. Riyadh, Kingdom of Saudi Arabia. Available online: (accessed on November 2023).

Salah, M. M., Abo-Khalil, A. G., & Praveen, R. P. (2021). Wind speed characteristics and energy potential for selected sites in Saudi Arabia. Journal of King Saud University - Engineering Sciences, 33(2), 119–128. doi:10.1016/j.jksues.2019.12.006.

Sedliačková, Z., Pobočíková, I., Michalková, M., & Jurášová, D. (2022). Wind speed modeling using Weibull distribution: A case of Liptovský Mikuláš, Slovakia. MATEC Web of Conferences, 357, 08005. doi:10.1051/matecconf/202235708005.

Kaplan, Y. A. (2020). Determination of Weibull parameters using the standard deviation method and performance comparison at different locations. Scientia Iranica, 27(6 D), 3075–3083. doi:10.24200/SCI.2019.50323.1632.

Hussain, I., Haider, A., Ullah, Z., Russo, M., Casolino, G. M., & Azeem, B. (2023). Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan. Energies, 16(3), 1515. doi:10.3390/en16031515.

Koholé, Y. W., Djiela, R. H. T., Fohagui, F. C. V., & Ghislain, T. (2023). Comparative study of thirteen numerical methods for evaluating Weibull parameters for solar energy generation at ten selected locations in Cameroon. Cleaner Energy Systems, 4, 100047. doi:10.1016/j.cles.2022.100047.

Tonsie Djiela, R. H., Tiam Kapen, P., & Tchuen, G. (2021). Wind energy of Cameroon by determining Weibull parameters: potential of an environmentally friendly energy. International Journal of Environmental Science and Technology, 18(8), 2251–2270. doi:10.1007/s13762-020-02962-z.

Alabbadi, A. A., Obaid, O. A., & AlZahrani, A. A. (2023). A comparative economic study of nuclear hydrogen production, storage, and transportation. International Journal of Hydrogen Energy (In Press). doi:10.1016/j.ijhydene.2023.08.225.

AlQdah, K. S., Alahmdi, R., Alansari, A., Almoghamisi, A., Abualkhair, M., & Awais, M. (2021). Potential of wind energy in Medina, Saudi Arabia based on Weibull distribution parameters. Wind Engineering, 45(6), 1652–1661. doi:10.1177/0309524X211027356.

Alfawzan, F., Alleman, J. E., & Rehmann, C. R. (2020). Wind energy assessment for NEOM city, Saudi Arabia. Energy Science & Engineering, 8(3), 755–767. doi:10.1002/ese3.548.

Nishanthy, J., Charles Raja, S., Praveen, T., Jeslin Drusila Nesamalar, J., & Venkatesh, P. (2022). Techno-economic analysis of a hybrid solar wind electric vehicle charging station in highway roads. International Journal of Energy Research, 46(6), 7883–7903. doi:10.1002/er.7688.

Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. doi:10.1016/j.rser.2018.03.065.

Al-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., Orm, N. B., Xavier, C. M., Bărbulescu, A., Sharma, M., & Dumitriu, C. S. (2021). Contamination assessment of heavy metals in agricultural soil, in the Liwa area (UAE). Toxics, 9(3), 53. doi:10.3390/toxics9030053.

Ghoniem, R. M., Alahmer, A., Rezk, H., & As’ad, S. (2023). Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System. Sustainability (Switzerland), 15(15), 12026. doi:10.3390/su151512026.

Abdelrady, A., Abdelhafez, M. H. H., & Ragab, A. (2021). Use of insulation based on nanomaterials to improve energy efficiency of residential buildings in a hot desert climate. Sustainability (Switzerland), 13(9), 5266. doi:10.3390/su13095266.

Zagubień, A., & Wolniewicz, K. (2022). Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies. Energies, 15(14), 5287. doi:10.3390/en15145287.

Aydin, O., Igliński, B., Krukowski, K., & Siemiński, M. (2022). Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland. Energies, 15(9), 3159. doi:10.3390/en15093159.

General Authority for Statistics. (2021). Household Energy Statistics 2021. Riyadh, Kingdom of Saudi Arabia. Available online: (accessed on May 2023).

Alaraj, M., Kumar, A., Alsaidan, I., Rizwan, M., & Jamil, M. (2021). Energy Production Forecasting from Solar Photovoltaic Plants Based on Meteorological Parameters for Qassim Region, Saudi Arabia. IEEE Access, 9, 83241–83251. doi:10.1109/ACCESS.2021.3087345.

Almarshoud, A. F. (2017). Technical and Economic Performance of 1MW Grid-connected PV system in Saudi Arabia. International Journal of Engineering Research and Applications, 07(04), 09–17. doi:10.9790/9622-0704010917.

Saudi Electricity Company. (2017). Annual Report: Saudi Electricity Company. available online: (accessed on November 2023).

Liu, H., Tellez, B. G., Atallah, T., & Barghouty, M. (2012). The role of CO2 capture and storage in Saudi Arabia’s energy future. International Journal of Greenhouse Gas Control, 11, 163–171. doi:10.1016/j.ijggc.2012.08.008.

Shu, Z. R., & Jesson, M. (2021). Estimation of Weibull parameters for wind energy analysis across the UK. Journal of Renewable and Sustainable Energy, 13(2), 23303. doi:10.1063/5.0038001.

Wadi, M., & Elmasry, W. (2021). Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electrical Engineering, 103(6), 2573–2594. doi:10.1007/s00202-021-01254-0.

Alsamamra, H. R., Salah, S., Shoqeir, J. A. H., & Manasra, A. J. (2022). A comparative study of five numerical methods for the estimation of Weibull parameters for wind energy evaluation at Eastern Jerusalem, Palestine. Energy Reports, 8, 4801–4810. doi:10.1016/j.egyr.2022.03.180.

Michael, E., Tjahjana, D. D. D. P., & Prabowo, A. R. (2021). Estimating the potential of wind energy resources using Weibull parameters: A case study of the coastline region of Dar es Salaam, Tanzania. Open Engineering, 11(1), 1093–1104. doi:10.1515/eng-2021-0108.

Bingöl, F. (2020). Comparison of Weibull Estimation Methods for Diverse Winds. Advances in Meteorology, 2020. doi:10.1155/2020/3638423.

Kang, D., Ko, K., & Huh, J. (2018). Comparative study of different methods for estimating Weibull parameters: A case study on Jeju Island, South Korea. Energies, 11(2), 356. doi:10.3390/en11020356.

Younis, A., Elshiekh, H., Osama, D., Shaikh-Eldeen, G., Elamir, A., Yassin, Y., Omer, A., & Biraima, E. (2023). Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind, 3(2), 213–231. doi:10.3390/wind3020013.

Akdaǧ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761–1766. doi:10.1016/j.enconman.2009.03.020.

Christofferson, R. D., & Gillette, D. A. (1987). A Simple Estimator of the Shape Factor of the Two-Parameter Weibull Distribution. Journal of Climate and Applied Meteorology, 26(2), 323–325. doi:10.1175/1520-0450(1987)026<0323:aseots>;2.

Akdaʇ, S. A., & Güler, Ö. (2015). A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Conversion and Management, 106, 1124–1133. doi:10.1016/j.enconman.2015.10.042.

Teimourian, H., Abubakar, M., Yildiz, M., & Teimourian, A. (2022). A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution. Energies, 15(15), 5684. doi:10.3390/en15155684.

Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. doi:10.1016/j.enconman.2015.11.015.

Alrashidi, M. (2023). Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm. Computers, Materials & Continua, 75(1), 1073–1088. doi:10.32604/cmc.2023.036170.

Baseer, M. A., Meyer, J. P., Rehman, S., & Alam, M. M. (2017). Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters. Renewable Energy, 102, 35–49. doi:10.1016/j.renene.2016.10.040.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-06-024


  • There are currently no refbacks.

Copyright (c) 2023 Mutaz A. Alanazi, Mohammed Aloraini, Muhammad Islam, Saleh Alyahya, Sheroz Khan