Wind Energy Assessment Using Weibull Distribution with Different Numerical Estimation Methods: A Case Study
Abstract
Doi: 10.28991/ESJ-2023-07-06-024
Full Text: PDF
Keywords
References
Abdel Wahid, T., & Shahein, R. (2022). On Kinetic and Irreversible Thermodynamic Treatments of a Rarefied Gaseous Plasma Bounded by a Moving Plate. Egyptian Journal of Pure and Applied Science, 59(2), 63–74. doi:10.21608/ejaps.2022.113392.1017.
Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., El-Yazied, A. A., Alabdallah, N. M., Hikal, M., Mohamed, M. H. M., Ibrahim, M. F. M., & Hasan, M. M. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309–320. doi:10.1016/j.plaphy.2021.08.002.
Jreisat, A., & Al-Mohamad, S. (2022). Bank Efficiency and Oil Price Volatility: A View from the GCC Countries. Emerging Science Journal, 6(3), 519-529. doi:10.28991/ESJ-2022-06-03-07.
General Authority for Statistics (2020). Electricity Energy Statistics, 2020. Riyadh, Kingdom of Saudi Arabia. Available online: https://www.stats.gov.sa/sites/default/files/Electrical%20Energy%20Statistics%202020EN_0.pdf (accessed on November 2023).
AlGhamdi, S. A., Abdel-Latif, A. M., Abd El-Kawi, O. S., & Abouelatta, O. B. (2022). Analysis of Wind Speed Data and Wind Energy Potential for Seven Selected Locations in KSA. Journal of Power and Energy Engineering, 10(04), 1–26. doi:10.4236/jpee.2022.104001.
Carnevale, E. A., Lombardi, L., & Zanchi, L. (2016). Wind and solar energy: a comparison of costs and environmental impacts. Advances in Energy Research, 4(2), 121–146. doi:10.12989/eri.2016.4.2.121.
Jung, C., & Schindler, D. (2019). Wind speed distribution selection – A review of recent development and progress. Renewable and Sustainable Energy Reviews, 114, 109290. doi:10.1016/j.rser.2019.109290.
General Authority for Statistics (2020). Renewable Energy Statistics, 2020. Riyadh, Kingdom of Saudi Arabia. Available online: https://www.stats.gov.sa/en/6827 (accessed on November 2023).
Salah, M. M., Abo-Khalil, A. G., & Praveen, R. P. (2021). Wind speed characteristics and energy potential for selected sites in Saudi Arabia. Journal of King Saud University - Engineering Sciences, 33(2), 119–128. doi:10.1016/j.jksues.2019.12.006.
Sedliačková, Z., Pobočíková, I., Michalková, M., & Jurášová, D. (2022). Wind speed modeling using Weibull distribution: A case of Liptovský Mikuláš, Slovakia. MATEC Web of Conferences, 357, 08005. doi:10.1051/matecconf/202235708005.
Kaplan, Y. A. (2020). Determination of Weibull parameters using the standard deviation method and performance comparison at different locations. Scientia Iranica, 27(6 D), 3075–3083. doi:10.24200/SCI.2019.50323.1632.
Hussain, I., Haider, A., Ullah, Z., Russo, M., Casolino, G. M., & Azeem, B. (2023). Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan. Energies, 16(3), 1515. doi:10.3390/en16031515.
Koholé, Y. W., Djiela, R. H. T., Fohagui, F. C. V., & Ghislain, T. (2023). Comparative study of thirteen numerical methods for evaluating Weibull parameters for solar energy generation at ten selected locations in Cameroon. Cleaner Energy Systems, 4, 100047. doi:10.1016/j.cles.2022.100047.
Tonsie Djiela, R. H., Tiam Kapen, P., & Tchuen, G. (2021). Wind energy of Cameroon by determining Weibull parameters: potential of an environmentally friendly energy. International Journal of Environmental Science and Technology, 18(8), 2251–2270. doi:10.1007/s13762-020-02962-z.
Alabbadi, A. A., Obaid, O. A., & AlZahrani, A. A. (2023). A comparative economic study of nuclear hydrogen production, storage, and transportation. International Journal of Hydrogen Energy (In Press). doi:10.1016/j.ijhydene.2023.08.225.
AlQdah, K. S., Alahmdi, R., Alansari, A., Almoghamisi, A., Abualkhair, M., & Awais, M. (2021). Potential of wind energy in Medina, Saudi Arabia based on Weibull distribution parameters. Wind Engineering, 45(6), 1652–1661. doi:10.1177/0309524X211027356.
Alfawzan, F., Alleman, J. E., & Rehmann, C. R. (2020). Wind energy assessment for NEOM city, Saudi Arabia. Energy Science & Engineering, 8(3), 755–767. doi:10.1002/ese3.548.
Nishanthy, J., Charles Raja, S., Praveen, T., Jeslin Drusila Nesamalar, J., & Venkatesh, P. (2022). Techno-economic analysis of a hybrid solar wind electric vehicle charging station in highway roads. International Journal of Energy Research, 46(6), 7883–7903. doi:10.1002/er.7688.
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. doi:10.1016/j.rser.2018.03.065.
Al-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., Orm, N. B., Xavier, C. M., Bărbulescu, A., Sharma, M., & Dumitriu, C. S. (2021). Contamination assessment of heavy metals in agricultural soil, in the Liwa area (UAE). Toxics, 9(3), 53. doi:10.3390/toxics9030053.
Ghoniem, R. M., Alahmer, A., Rezk, H., & As’ad, S. (2023). Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System. Sustainability (Switzerland), 15(15), 12026. doi:10.3390/su151512026.
Abdelrady, A., Abdelhafez, M. H. H., & Ragab, A. (2021). Use of insulation based on nanomaterials to improve energy efficiency of residential buildings in a hot desert climate. Sustainability (Switzerland), 13(9), 5266. doi:10.3390/su13095266.
Zagubień, A., & Wolniewicz, K. (2022). Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies. Energies, 15(14), 5287. doi:10.3390/en15145287.
Aydin, O., Igliński, B., Krukowski, K., & Siemiński, M. (2022). Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland. Energies, 15(9), 3159. doi:10.3390/en15093159.
General Authority for Statistics. (2021). Household Energy Statistics 2021. Riyadh, Kingdom of Saudi Arabia. Available online: https://www.stats.gov.sa/en/897 (accessed on May 2023).
Alaraj, M., Kumar, A., Alsaidan, I., Rizwan, M., & Jamil, M. (2021). Energy Production Forecasting from Solar Photovoltaic Plants Based on Meteorological Parameters for Qassim Region, Saudi Arabia. IEEE Access, 9, 83241–83251. doi:10.1109/ACCESS.2021.3087345.
Almarshoud, A. F. (2017). Technical and Economic Performance of 1MW Grid-connected PV system in Saudi Arabia. International Journal of Engineering Research and Applications, 07(04), 09–17. doi:10.9790/9622-0704010917.
Saudi Electricity Company. (2017). Annual Report: Saudi Electricity Company. available online: https://www.se.com.sa/en-us/Pages/AnnualReports.aspx (accessed on November 2023).
Liu, H., Tellez, B. G., Atallah, T., & Barghouty, M. (2012). The role of CO2 capture and storage in Saudi Arabia’s energy future. International Journal of Greenhouse Gas Control, 11, 163–171. doi:10.1016/j.ijggc.2012.08.008.
Shu, Z. R., & Jesson, M. (2021). Estimation of Weibull parameters for wind energy analysis across the UK. Journal of Renewable and Sustainable Energy, 13(2), 23303. doi:10.1063/5.0038001.
Wadi, M., & Elmasry, W. (2021). Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electrical Engineering, 103(6), 2573–2594. doi:10.1007/s00202-021-01254-0.
Alsamamra, H. R., Salah, S., Shoqeir, J. A. H., & Manasra, A. J. (2022). A comparative study of five numerical methods for the estimation of Weibull parameters for wind energy evaluation at Eastern Jerusalem, Palestine. Energy Reports, 8, 4801–4810. doi:10.1016/j.egyr.2022.03.180.
Michael, E., Tjahjana, D. D. D. P., & Prabowo, A. R. (2021). Estimating the potential of wind energy resources using Weibull parameters: A case study of the coastline region of Dar es Salaam, Tanzania. Open Engineering, 11(1), 1093–1104. doi:10.1515/eng-2021-0108.
Bingöl, F. (2020). Comparison of Weibull Estimation Methods for Diverse Winds. Advances in Meteorology, 2020. doi:10.1155/2020/3638423.
Kang, D., Ko, K., & Huh, J. (2018). Comparative study of different methods for estimating Weibull parameters: A case study on Jeju Island, South Korea. Energies, 11(2), 356. doi:10.3390/en11020356.
Younis, A., Elshiekh, H., Osama, D., Shaikh-Eldeen, G., Elamir, A., Yassin, Y., Omer, A., & Biraima, E. (2023). Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind, 3(2), 213–231. doi:10.3390/wind3020013.
Akdaǧ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761–1766. doi:10.1016/j.enconman.2009.03.020.
Christofferson, R. D., & Gillette, D. A. (1987). A Simple Estimator of the Shape Factor of the Two-Parameter Weibull Distribution. Journal of Climate and Applied Meteorology, 26(2), 323–325. doi:10.1175/1520-0450(1987)026<0323:aseots>2.0.co;2.
Akdaʇ, S. A., & Güler, Ö. (2015). A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Conversion and Management, 106, 1124–1133. doi:10.1016/j.enconman.2015.10.042.
Teimourian, H., Abubakar, M., Yildiz, M., & Teimourian, A. (2022). A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution. Energies, 15(15), 5684. doi:10.3390/en15155684.
Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. doi:10.1016/j.enconman.2015.11.015.
Alrashidi, M. (2023). Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm. Computers, Materials & Continua, 75(1), 1073–1088. doi:10.32604/cmc.2023.036170.
Baseer, M. A., Meyer, J. P., Rehman, S., & Alam, M. M. (2017). Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters. Renewable Energy, 102, 35–49. doi:10.1016/j.renene.2016.10.040.
DOI: 10.28991/ESJ-2023-07-06-024
Refbacks
- There are currently no refbacks.