Coronavirus Disease Incidence Resonance with Coastline Dynamics: An Evaluation on Global Resurgence of the Pandemic

Hesham Magd, Henry J. Karyamsetty, Khalfan Al-Asmi

Abstract


Introduction: Many studies were done earlier to understand the role of climatic, environmental, and sociodemographic factors in the transmission, spread, and viability of SARS-CoV-2. Objectives: While there are principal climatic factors that influence the transmission and spread, specific factors such as latitude and water body mass are not critically examined. Therefore, this study aims to investigate the role of latitude and heat flux from water body mass in coastal environs on the resurgence and incidence of COVID. Methodology: A study was conducted examining the cases reported per million population, latitude degrees, and coastline length in two criteria groups (n = 120 and 10) spanning five geographic continental regions. The collected data were statistically analyzed to validate the three prepositions of the study. Findings: The cases reported per million population were least in countries lying below 25˚-degree latitude, and countries in this range have the mean highest coastline length. Our analysis in the n = 120 group reveals a moderate relationship among rises in cases with latitude degrees (r = 0.425, p < 0.01, n =120) but is associated negatively with coastline length. From the top countries having the longest coastline length, the association among the variables reveals a weak relationship exists between cases and latitude (r = 0.356, p = 0.312, n = 10), while no correlation is observed with coastline length. Novelty:A rise in the incidence rate and the global resurgence of cases can be explained by previous researchers considering climatic variables and socio-demographic factors. However, other parameters, such as the latent heat of evaporation from water body mass in coastal zones in different latitudinal countries, on the incidence and resurgence patterns are examined in this study. Observations indicate that the disease incidence trend is not similar across all countries and that no single factor fully influences the rise in cases.

 

Doi: 10.28991/ESJ-2023-07-05-024

Full Text: PDF


Keywords


Coronavirus; Flux; Latent; Latitude; Transmission; Aerosol; Incidence; Energy; Dynamics.

References


WHO. (2023). WHO coronavirus dashboard. World Health Organization (WHO), Geneva, Switzerland. Available online: https://covid19.who.int/ (accessed on May 2023).

Bollinger, R., & Ray, S. (2001). COVID variants: what you should know. Health, John Hopkins Medicine. The Johns Hopkins University, Baltimore, United States. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-you-should-know (accessed on May 2023).

Alam, Md. S., & Sultana, R. (2021). Influences of climatic and non-climatic factors on COVID-19 outbreak: A review of existing literature. Environmental Challenges, 5, 100255. doi:10.1016/j.envc.2021.100255.

Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 724. doi:10.1016/j.scitotenv.2020.138201.

Mecenas, P., Bastos, R. T. da R. M., Vallinoto, A. C. R., & Normando, D. (2020). Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLOS ONE, 15(9), e0238339. doi:10.1371/journal.pone.0238339.

Rendana, M. (2020). Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban Climate, 34, 100680. doi:10.1016/j.uclim.2020.100680.

Bilal, Bashir, M. F., Komal, B., Benghoul, M., Bashir, M. A., & Tan, D. (2021). Nexus between the covid-19 dynamics and environmental pollution indicators in South America. Risk Management and Healthcare Policy, 14, 67–74. doi:10.2147/RMHP.S290153.

Contini, D., & Costabile, F. (2020). Does air pollution influence COVID-19 outbreaks? Atmosphere, 11(4), 377. doi:10.3390/ATMOS11040377.

Ehsanifar, M. (2021). Airborne aerosols particles and COVID-19 transition. Environmental Research, 200. doi:10.1016/j.envres.2021.111752.

Zhao, Y., Richardson, B., Takle, E., Chai, L., Schmitt, D., & Xin, H. (2019). Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Scientific Reports, 9(1), 11755. doi:10.1038/s41598-019-47788-z.

Nath, D., Sasikumar, K., Nath, R., & Chen, W. (2021). Factors Affecting COVID-19 Outbreaks across the Globe: Role of Extreme Climate Change. Sustainability, 13(6), 3029. doi:10.3390/su13063029.

World Health Organization WHO). (2020). Coronavirus disease (COVID-19): Climate change. World Health Organization (WHO), Geneva, Switzerland. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-climate-change (accessed on September 2023).

Amnuaylojaroen, T., & Parasin, N. (2021). The Association between COVID-19, Air Pollution, and Climate Change. Frontiers in Public Health, 9, 62499. doi:10.3389/fpubh.2021.662499.

Kumar, P.B., Cronin, M. F., Joseph, S., Ravichandran, M., & Sureshkumar, N. (2017). Latent heat flux sensitivity to sea surface temperature: Regional perspectives. Journal of Climate, 30(1), 129–143. doi:10.1175/JCLI-D-16-0285.1.

Large, W. G., & Pond, S. (1982). Sensible and Latent Heat Flux Measurements over the Ocean. Journal of Physical Oceanography, 12(5), 464–482. doi:10.1175/1520-0485(1982)012<0464:salhfm>2.0.co;2.

Wu, R., Kirtman, B. P., & Pegion, K. (2007). Surface latent heat flux and its relationship with sea surface temperature in the National Centers for Environmental Prediction Climate Forecast System simulations and retrospective forecasts. Geophysical Research Letters, 34(17). doi:10.1029/2007GL030751.

Meng, X., Liu, H., Du, Q., Liu, Y., & Xu, L. (2020). Factors controlling the latent and sensible heat fluxes over Erhai Lake under different atmospheric surface layer stability conditions. Atmospheric and Oceanic Science Letters, 13(5), 400–406. doi:10.1080/16742834.2020.1769450.

Zhao, L., Qi, Y., Luzzatto-Fegiz, P., Cui, Y., & Zhu, Y. (2020). COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets. Nano Letters, 20(10), 7744–7750. doi:10.1021/acs.nanolett.0c03331.

Huang, R. X. (2013). Ocean, Energy Flows in. Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, Netherlands, doi:10.1016/b978-0-12-409548-9.01198-2.

Zhang, G. J., & Mcphaden, M. J. (1995). The Relationship between Sea Surface Temperature and Latent Heat Flux in the Equatorial Pacific. Journal of Climate, 8(3), 589–605. doi:10.1175/1520-0442(1995)008<0589:trbsst>2.0.co;2.

Ovadnevaite, J., Manders, A., De Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A. I., Korhonen, H., & O’Dowd, C. D. (2014). A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 14(4), 1837–1852. doi:10.5194/acp-14-1837-2014.

Dowd, C. D. O. (2001). Biogenic coastal aerosol production and its influence on aerosol radiative properties. Journal of Geophysical Research: Atmospheres, 106(2), 1545–1549. doi:10.1029/2000jd900423.

Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2), 100–114. doi:10.1016/j.jhin.2006.05.022.

Wong, T. W., Lee, C. K., Tam, W., Lau, J. T. F., Yu, T. S., Lui, S. F., Chan, P. K. S., Li, Y., Bresee, J. S., Sung, J. J. Y., & Parashar, U. D. (2004). Cluster of SARS among Medical Students Exposed to Single Patient, Hong Kong. Emerging Infectious Diseases, 10(2), 269–276. doi:10.3201/eid1002.030452.

Yu, I. T. S., Wong, T. W., Chiu, Y. L., Lee, N., & Li, Y. (2005). Temporal-Spatial Analysis of Severe Acute Respiratory Syndrome among: Hospital Inpatients. Clinical Infectious Diseases, 40(9), 1237–1243. doi:10.1086/428735.

Li, Y., Huang, X., Yu, I. T. S., Wong, T. W., & Qian, H. (2005). Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air, 15(2), 83–95. doi:10.1111/j.1600-0668.2004.00317.x.

Booth, T. F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Spence, M., Paton, S., Henry, B., Mederski, B., White, D., Low, D. E., McGeer, A., Simor, A., Vearncombe, M., Downey, J., Jamieson, F. B., Tang, P., & Plummer, F. (2005). Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. Journal of Infectious Diseases, 191(9), 1472–1477. doi:10.1086/429634.

Xiao, W. J., Wang, M. L., Wei, W., Wang, J., Zhao, J. J., Yi, B., & Li, J. S. (2004). Detection of SARS-CoV and RNA on aerosol samples from SARS-patients admitted to hospital. Zhonghua Liu Xing Bing Xue Za Zhi, 25(10), 882-885.

Gholipour, S., Mohammadi, F., Nikaeen, M., Shamsizadeh, Z., Khazeni, A., Sahbaei, Z., Mousavi, S. M., Ghobadian, M., & Mirhendi, H. (2021). COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 273, 129701. doi:10.1016/j.chemosphere.2021.129701.

Reinmuth-Selzle, K., Kampf, C. J., Lucas, K., Lang-Yona, N., Fröhlich-Nowoisky, J., Shiraiwa, M., Lakey, P. S. J., Lai, S., Liu, F., Kunert, A. T., Ziegler, K., Shen, F., Sgarbanti, R., Weber, B., Bellinghausen, I., Saloga, J., Weller, M. G., Duschl, A., Schuppan, D., & Pöschl, U. (2017). Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science and Technology, 51(8), 4119–4141. doi:10.1021/acs.est.6b04908.

Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C. P., Hamilton, K. A., Haramoto, E., & Rose, J. B. (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of the Total Environment, 739, 139076. doi:10.1016/j.scitotenv.2020.139076.

Fitzgerald, J. W. (1991). Marine aerosols: A review. Atmospheric Environment. Part A. General Topics, 25(3–4), 533–545. doi:10.1016/0960-1686(91)90050-h.

Piazzola, J., Bruch, W., Desnues, C., Parent, P., Yohia, C., & Canepa, E. (2021). Influence of meteorological conditions and aerosol properties on the covid-19 contamination of the population in coastal and continental areas in France: study of offshore and onshore winds. Atmosphere, 12(4), 523. doi:10.3390/atmos12040523.

Hatef, E., Kitchen, C., Chang, H. Y., Kharrazi, H., Tang, W., & Weiner, J. P. (2021). Early relaxation of community mitigation policies and risk of COVID-19 resurgence in the United States. Preventive Medicine, 145, 106435. doi:10.1016/j.ypmed.2021.106435.

Khan, S., Zayed, N. M., Darwish, S., Nitsenko, V., Islam, K. M. A., Hassan, Md. A., & Dubrova, O. (2022). Pre and Present COVID-19 Situation: A Framework of Educational Transformation in South Asia Region. Emerging Science Journal, 7, 81–94. doi:10.28991/esj-2023-sper-06.

Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), 1-13. doi:10.1126/science.abd9149.

Greenhalgh, T., Jimenez, J. L., Prather, K. A., Tufekci, Z., Fisman, D., & Schooley, R. (2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet, 397(10285), 1603–1605. doi:10.1016/S0140-6736(21)00869-2.

Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., Kurnitski, J., Marr, L. C., Morawska, L., & Noakes, C. (2021). Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 31(2), 314–323. doi:10.1111/ina.12751.

Cao, Y., Shao, L., Jones, T., Oliveira, M. L. S., Ge, S., Feng, X., Silva, L. F. O., & BéruBé, K. (2021). Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana Research, 93, 243–251. doi:10.1016/j.gr.2021.02.002.

Guo, C., Bo, Y., Lin, C., Li, H. B., Zeng, Y., Zhang, Y., Hossain, M. S., Chan, J. W. M., Yeung, D. W., Kwok, K., Wong, S. Y. S., Lau, A. K. H., & Lao, X. Q. (2021). Meteorological factors and COVID-19 incidence in 190 countries: An observational study. Science of the Total Environment, 757, 143783. doi:10.1016/j.scitotenv.2020.143783.

Notari, A. (2021). Temperature dependence of COVID-19 transmission. Science of the Total Environment, 763, 144390. doi:10.1016/j.scitotenv.2020.144390.

Chu, B., Chen, R., Liu, Q., & Wang, H. (2023). Effects of High Temperature on COVID-19 Deaths in U.S. Counties. GeoHealth, 7(3), 2022 000705. doi:10.1029/2022GH000705.

Bergero, P., Schaposnik, L. P., & Wang, G. (2023). Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s. Scientific Reports, 13(1), 1525. doi:10.1038/s41598-023-27983-9.

Magd, H., Asmi, K., & Henry, K. (2020). COVID-19 Influencing Factors on Transmission and Incidence Rates-Validation Analysis. Journal of Biomedical Research & Environmental Sciences, 1(7), 277–291. doi:10.37871/jbres1155.

Dbouk, T., & Drikakis, D. (2020). Weather impact on airborne coronavirus survival. Physics of Fluids, 32(9), 093312. doi:10.1063/5.0024272.

Hussein, M. M. A. (2022). Relationship between Latent Heat Flux and Sea Surface Temperature in Alexandria Eastern Harbor, Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 22(6), 1-12. doi:10.4194/TRJFAS20642.

Worldometer website. (2023). Worldometer: Real-Time World Statistics. Coronavirus Updates. Available online: https://www.worldometers.info/ (accessed on May 2023).

World Population Review. (2023). Continent and regional population. World Population Review, Lancaster, United States. Available online: https://worldpopulationreview.com/continents (accessed on May 2023).

World Atlas. (2023). Continents of the world. WorldAtlas, Saint-Laurent. Available online: https://www.worldatlas.com/ (accessed on May 2023).

LatLong (2022). Latitude and Longitude. 2012-2022, Latitude and longitude finder. Available online: www.LatLong.net (accessed on May 2023).

Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., McAllister, D. (2001). Pilot Analysis of Global Ecosystems: Coastal Ecosystems; World Recourses Institute, Washington, United States.

LePan, N., Routley, N., & Schell, S. (2020). Visualizing the history of pandemic. Visual Capitalist. Available online: https://www.visualcapitalist.com/history-of-pandemics-deadliest/ (accessed on May 2023).

Nandin de Carvalho, H. (2022). Latitude impact on pandemic Sars-Cov-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths. Journal of Photochemistry and Photobiology, 10, 100108. doi:10.1016/j.jpap.2022.100108.

Burra, P., Soto-Díaz, K., Chalen, I., Gonzalez-Ricon, R. J., Istanto, D., & Caetano-Anollés, G. (2021). Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide. Evolutionary Bioinformatics, 17. doi:10.1177/1176934321989695.

Bashir, M. F., Ma, B., & Shahzad, L. (2020). A brief review of socio-economic and environmental impact of Covid-19. Air Quality, Atmosphere & Health, 13(12), 1403–1409. doi:10.1007/s11869-020-00894-8.

Ahmad, S., Shoaib, A., Ali, M. S., Alam, M. S., Alam, N., Ali, M., Mujtaba, M. A., Ahmad, A., Ansari, M. S., & Ali, M. D. (2021). Epidemiology, risk, myths, pharmacotherapeutic management and socio-economic burden due to novel covid-19: A recent update. Research Journal of Pharmacy and Technology, 14(4), 2308–2315. doi:10.52711/0974-360X.2021.00408.

Singh, R. P., & Chauhan, A. (2020). Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere & Health, 13(8), 921–928. doi:10.1007/s11869-020-00863-1.

Seale, H., Dyer, C. E. F., Abdi, I., Rahman, K. M., Sun, Y., Qureshi, M. O., Dowell-Day, A., Sward, J., & Islam, M. S. (2020). Improving the impact of non-pharmaceutical interventions during COVID-19: examining the factors that influence engagement and the impact on individuals. BMC Infectious Diseases, 20(1), 607. doi:10.1186/s12879-020-05340-9.

Hawkins, R. B., Charles, E. J., & Mehaffey, J. H. (2020). Socio-economic status and COVID-19–related cases and fatalities. Public Health, 189, 129–134. doi:10.1016/j.puhe.2020.09.016.

Chen, S., Prettner, K., Kuhn, M., Geldsetzer, P., Wang, C., Bärnighausen, T., & Bloom, D. E. (2021). Climate and the spread of COVID-19. Scientific Reports, 11(1), 9042. doi:10.1038/s41598-021-87692-z.

Buonanno, M., Welch, D., Shuryak, I., & Brenner, D. J. (2020). Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports, 10(1), 1–8. doi:10.1038/s41598-020-67211-2.

Menebo, M. M. (2020). Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Science of the Total Environment, 737, 139659. doi:10.1016/j.scitotenv.2020.139659.

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H. L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. doi:10.1016/S2666-5247(20)30003-3.

Sonja, M. (2017). The impact of aerosols on the sensible and latent heat fluxes in Beijing. Master Thesis, University of Helsinki, Helsinki, Finland.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-05-024

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hesham Magd, Henry Jonathan Karyamsetty, Khalfan Al Asmi