Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers

Faris M. AL-Oqla, Hossam Faris, Maria Habib, Pedro A. Castillo


Advanced modern technology and the industrial sustainability theme have contributed to the implementation of composite materials for various industrial applications. Bio-composites are among the desired alternatives for green products. However, to properly control the performance of bio-composites, predicting their constituent properties is of paramount importance. This work introduces an innovative, evolving genetic programming tree model for predicting the mechanical properties of natural fibers for the first time based upon several inherent chemical and physical properties. Cellulose, hemicellulose, lignin, and moisture contents, as well as the Microfibrillar angle of various natural fibers, were considered to establish the prediction models. A one-hold-out methodology was applied for the training/testing phases. Robust models were developed utilizing evolving genetic programming tree models to predict the tensile strength, Young’s modulus, and the elongation at break properties of the natural fibers. It was revealed that the Microfibrillar angle was dominant and capable of determining the ultimate tensile strength of the natural fibers by 44.7%, comparable to other considered properties, while the impact of cellulose content in the model was only 35.6%. This would facilitate utilizing artificial intelligence to predict the overall mechanical properties of natural fibers without exhausting experimental efforts and cost to enhance the development of better green composite materials for various industrial applications.


Doi: 10.28991/ESJ-2023-07-06-02

Full Text: PDF


Biocomposites; Natural Fibers; Artificial Intelligence; Modeling; Sustainability.


Hayajneh, M., AL-Oqla, F. M., & Aldhirat, A. (2022). Physical and Mechanical Inherent Characteristic Investigations of Various Jordanian Natural Fiber Species to Reveal Their Potential for Green Biomaterials. Journal of Natural Fibers, 19(13), 7199–7212. doi:10.1080/15440478.2021.1944432.

Gupta, P., Toksha, B., Patel, B., Rushiya, Y., Das, P., & Rahaman, M. (2022). Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chemical Record, 22(11), 202200186. doi:10.1002/tcr.202200186.

Aridi, N. A. M., Sapuan, S. M., Zainudin, E. S., & AL-Oqla, F. M. (2016). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. International Journal of Polymer Analysis and Characterization, 21(4), 305–313. doi:10.1080/1023666X.2016.1148316.

AL-Oqla, F. M., Hayajneh, M. T., & Al-Shrida, M. M. (2023). Hybrid bio-fiber/bio-ceramic composite materials: Mechanical performance, thermal stability, and morphological analysis. Reviews on Advanced Materials Science, 62(1). doi:10.1515/rams-2023-0101.

Rajeshkumar, G., Seshadri, A., Sumesh, K. R., & Nagaraja, K. C. (2021). Influence of Phoenix sp. Fiber Content on the Viscoelastic Properties of Polymer Composites. Materials, Design, and Manufacturing for Sustainable Environment, Lecture Notes in Mechanical Engineering. Springer, Singapore. doi:10.1007/978-981-15-9809-8_10.

Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. doi:10.1016/j.jclepro.2020.120978.

AL-Oqla, F. M., & Fares, O. (2023). Investigating the effect of green composite back sheet materials on solar panel output voltage harvesting for better sustainable energy performance. Energy Harvesting and Systems. doi:10.1515/ehs-2023-0041.

Yu, X., Hu, X., Cheng, W., Zhao, Y., Shao, Z., Xue, D., & Wu, M. (2022). Preparation and evaluation of humic acid–based composite dust suppressant for coal storage and transportation. Environmental Science and Pollution Research, 29(12), 17072–17086. doi:10.1007/s11356-021-16685-2.

Ismail, A. H. M., AL-Oqla, F. M., Risby, M. S., & Sapuan, S. M. (2022). On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review. Carbon Letters, 32(3), 727–740. doi:10.1007/s42823-022-00323-z.

AL-Oqla, F. M., Alaaeddin, M. H., Hoque, M. E., & Thakur, V. K. (2022). Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review. Journal of Bionic Engineering, 19(6), 1562–1577. doi:10.1007/s42235-022-00240-x.

Adeniyi, A. G., Adeoye, S. A., Onifade, D. V., & Ighalo, J. O. (2021). Multi-scale finite element analysis of effective elastic property of sisal fiber-reinforced polystyrene composites. Mechanics of Advanced Materials and Structures, 28(12), 1245–1253. doi:10.1080/15376494.2019.1660016.

Aridi, N. A. M., Sapuan, S. M., Zainudin, E. S., & AL-Oqla, F. M. (2016). Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization, 21(8), 675–685. doi:10.1080/1023666X.2016.1207006.

Nurazzi, N. M., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R., Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S., & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers, 13(16), 2710. doi:10.3390/polym13162710.

AL-Oqla, F. M., Alaaeddin, M. H., & El-Shekeil, Y. A. (2021). Thermal stability and performance trends of sustainable lignocellulosic olive / low density polyethylene biocomposites for better environmental green materials. Engineering Solid Mechanics, 9(4), 439–448. doi:10.5267/J.ESM.2021.5.002.

Tiwary, A., Kumar, R., & Chohan, J. S. (2021). A review on characteristics of composite and advanced materials used for aerospace applications. Materials Today: Proceedings, 51, 865–870. doi:10.1016/j.matpr.2021.06.276.

Sharma, A. K., Bhandari, R., Aherwar, A., & Rimašauskiene, R. (2020). Matrix materials used in composites: A comprehensive study. Materials Today: Proceedings, 21, 1559–1562. doi:10.1016/j.matpr.2019.11.086.

Losini, A. E., Grillet, A. C., Bellotto, M., Woloszyn, M., & Dotelli, G. (2021). Natural additives and biopolymers for raw earth construction stabilization – a review. Construction and Building Materials, 304, 124507. doi:10.1016/j.conbuildmat.2021.124507.

Hayajneh, M. T., Al-Shrida, M. M., & Al-Oqla, F. M. (2022). Mechanical, thermal, and tribological characterization of bio-polymeric composites: A comprehensive review. E-Polymers, 22(1), 641–663. doi:10.1515/epoly-2022-0062.

AL-Oqla, F. M. (2021). Effects of Intrinsic Mechanical Characteristics of Lignocellulosic Fibres on the Energy Absorption and Impact Rupture Stress of Low Density Polyethylene Biocomposites. International Journal of Sustainable Engineering, 14(6), 2009–2017. doi:10.1080/19397038.2021.1966127.

Meshram, J. H., & Palit, P. (2013). Biology of Industrial Bast Fibers with Reference to Quality. Journal of Natural Fibers, 10(2), 176–196. doi:10.1080/15440478.2013.765669.

Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., & Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442–2458. doi:10.1016/j.jmrt.2021.06.014.

Chaudhary, V., & Ahmad, F. (2020). A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polymer Testing, 91, 106792. doi:10.1016/j.polymertesting.2020.106792.

Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153–2183. doi:10.1177/1528083716654468.

AL-Oqla, F. M., Hayajneh, M. T., & Nawafleh, N. (2023). Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review. Emergent Materials, 6(3), 809–826. doi:10.1007/s42247-023-00478-z.

Stepanova, M., & Korzhikova-Vlakh, E. (2022). Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers, 14(7), 1477. doi:10.3390/polym14071477.

AL-Oqla, F. M. (2023). Manufacturing and delamination factor optimization of cellulosic paper/epoxy composites towards proper design for sustainability. International Journal on Interactive Design and Manufacturing, 17(2), 765–773. doi:10.1007/s12008-022-00980-4.

Amara, C., El Mahdi, A., Medimagh, R., & Khwaldia, K. (2021). Nanocellulose-based composites for packaging applications. Current Opinion in Green and Sustainable Chemistry, 31, 100512. doi:10.1016/j.cogsc.2021.100512.

AL-Oqla, F. M. (2023). Biomaterial Hierarchy Selection Framework Under Uncertainty for More Reliable Sustainable Green Products. JOM, 75(7), 2187–2198. doi:10.1007/s11837-023-05797-4.

Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., & Asrofi, M. (2021). Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 13(8), 1326. doi:10.3390/polym13081326.

Belaadi, A., Boumaaza, M., Amroune, S., & Bourchak, M. (2020). Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. International Journal of Advanced Manufacturing Technology, 111(7–8), 2073–2094. doi:10.1007/s00170-020-06217-6.

Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2021). Thermomechanical Behavior of Methylene Diphenyl Diisocyanate-Bonded Flax/Glass Woven Fabric Reinforced Laminated Composites. ACS Omega, 6(9), 6124–6133. doi:10.1021/acsomega.0c04798.

Sohn, A., Olson, R. S., & Moore, J. H. (2017). Toward the automated analysis of complex diseases in genome-wide association studies using genetic programming. Proceedings of the Genetic and Evolutionary Computation Conference, 489–496. doi:10.1145/3071178.3071212.

Zhang, F., Parayath, N. N., Ene, C. I., Stephan, S. B., Koehne, A. L., Coon, M. E., Holland, E. C., & Stephan, M. T. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nature Communications, 10(1), 3974. doi:10.1038/s41467-019-11911-5.

Habib, S., Khan, I., Aladhadh, S., Islam, M., & Khan, S. (2022). External Features-Based Approach to Date Grading and Analysis with Image Processing. Emerging Science Journal, 6(4), 694-704. doi:10.28991/ESJ-2022-06-04-03.

Zhou, Y., Wang, Y., Wang, K., Kang, L., Peng, F., Wang, L., & Pang, J. (2020). Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Applied Energy, 260, 114169. doi:10.1016/j.apenergy.2019.114169.

Khafagy, M., El-Dakhakhni, W., & Dickson-Anderson, S. (2022). Multi-gene genetic programming expressions for simulating solute transport in fractures. Journal of Hydrology, 606, 127316. doi:10.1016/j.jhydrol.2021.127316.

Awoyera, P. O., Kirgiz, M. S., Viloria, A., & Ovallos-Gazabon, D. (2020). Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 9(4), 9016–9028. doi:10.1016/j.jmrt.2020.06.008.

Guan, P., He, J. N., Zhang, J. R., Ai, Y. T., Yao, Y. D., & Bao, T. N. (2022). Fatigue Life Prediction Study for Vane Thermal Barrier Coatings Based on an Axisymmetric Model and Genetic Algorithm. Journal of Thermal Spray Technology, 31(8), 2327–2341. doi:10.1007/s11666-022-01453-6.

Lensen, A., Xue, B., & Zhang, M. (2021). Genetic programming for evolving a front of interpretable models for data visualization. IEEE Transactions on Cybernetics, 51(11), 5468–5482. doi:10.1109/TCYB.2020.2970198.

Haider, C., de Franca, F. O., Burlacu, B., & Kronberger, G. (2023). Shape-constrained multi-objective genetic programming for symbolic regression. Applied Soft Computing, 132, 109855. doi:10.1016/j.asoc.2022.109855.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-06-02


  • There are currently no refbacks.

Copyright (c) 2023 Faris M. AL-Oqla, Hossam Faris, Maria Habib, Pedro Castillo