Factors Affecting Population Density and Mound Distribution of Mud Lobsters, Thalassina spp.

Krisanadej Jaroensutasinee, Mullica Jaroensutasinee, Songprat Detrattanawichai, Elena Sparrow

Abstract


This study is the first to investigate factors affecting population density and mound distribution of mud lobsters, Thalassina spp., in Southern Thailand. Mud lobsters are essential for nutrient cycling and maintaining mangrove ecosystems through their bioturbation activities. This study was conducted by establishing three transect lines in a 5×350 m2area beginning 100 m from the edge of the river towards inland and composed of six subplots with 50-m intervals (i.e., 100, 150, 200, 250, 300, and 350-m subplots). Numbers of mounds were recorded, and mound height and diameter basal area in each subplot were measured. Soil samples were collected, and moisture, grain size distribution, and pH were measured. The results showed that soil grain size was mostly less than 250 μm with an average soil pH of 4.48. The mound density and mound height increased with increased distance from the river (i.e., 267 mounds per hectare at 100 m increased to 1,734 mounds per hectare at 350 m from the river edge) and with decreased soil moisture (72.6% to 65.9%). This indicated that the mud lobsters preferred to build more and higher mounds farther away from the river edge, where they were less affected by the tide and the soil was drier. Findings also indicated that mud lobsters used resource partitioning to reduce intraspecific competition. This study is the first to show that mounds associated with prop roots had greater heights than mounds without prop roots nearby.

 

Doi: 10.28991/ESJ-2024-08-01-012

Full Text: PDF


Keywords


Mud Lobster; Mangrove Frost; Soil Moisture; Marine Biology; Mound Density.

References


Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., & Banta, G. T. (2012). What is bioturbation? the need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series, 446, 285–302. doi:10.3354/meps09506.

Guimond, J. A., Seyfferth, A. L., Moffett, K. B., & Michael, H. A. (2020). A physical-biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environmental Research Letters, 15(3), 34024. doi:10.1088/1748-9326/ab60e2.

Xiao, K., Wilson, A. M., Li, H., Santos, I. R., Tamborski, J., Smith, E., Lang, S. Q., Zheng, C., Luo, X., Lu, M., & Correa, R. E. (2021). Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnology and Oceanography, 66(1), 14–29. doi:10.1002/lno.11582.

Xiao, K., Pan, F., Santos, I. R., Zheng, Y., Zheng, C., Chen, N., Lu, Z., Wang, F., Li, Z., & Li, H. (2022). Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils. Geoderma, 424(2022), 115990. doi:10.1016/j.geoderma.2022.115990.

Farrell, E. M., Beermann, J., Neumann, A., & Wrede, A. (2023). The interplay of temperature and algal enrichment intensifies bioturbation of the intertidal amphipod Corophium volutator. Journal of Experimental Marine Biology and Ecology, 559(2023), 151837. doi:10.1016/j.jembe.2022.151837.

Giorgini, M., de Astarloa, C. D., Esquius, K. S., Miguez, A., Fanjul, E., Escapa, M., & Iribarne, O. (2023). Discriminating the effects of bioturbation and herbivory by the intertidal burrowing crab Neohelice granulata on microphytobenthic assemblages of SW Atlantic mudflats. Journal of Experimental Marine Biology and Ecology, 567. doi:10.1016/j.jembe.2023.151928.

Correia, R. R. S., & Guimarães, J. R. D. (2016). Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil. Marine Pollution Bulletin, 109(1), 453–460. doi:10.1016/j.marpolbul.2016.05.028.

Braeckman, U., Foshtomi, M. Y., Van Gansbeke, D., Meysman, F., Soetaert, K., Vincx, M., & Vanaverbeke, J. (2014). Variable Importance of Macrofaunal Functional Biodiversity for Biogeochemical Cycling in Temperate Coastal Sediments. Ecosystems, 17(4), 720–737. doi:10.1007/s10021-014-9755-7.

Zhang, W., Wirtz, K., Daewel, U., Wrede, A., Kröncke, I., Kuhn, G., Neumann, A., Meyer, J., Ma, M., & Schrum, C. (2019). The Budget of Macrobenthic Reworked Organic Carbon: A Modeling Case Study of the North Sea. Journal of Geophysical Research: Biogeosciences, 124(6), 1446–1471. doi:10.1029/2019JG005109.

Kristensen, E. (2000). Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia, 426(1), 1–24. doi:10.1023/A:1003980226194.

Moh, H. H., & Chong, V. C. (2009). A new species of Thalassina (Crustacea: Decapoda: Thalassinidae) From Malaysia. Raffles Bulletin of Zoology, 57(2), 465–473. doi:10.5281/zenodo.4509163.

Ngoc-Ho, N., & de Saint Laurent, M. (2009). The genus Thalassina Latreille, 1806 (Crustacea: Thalassinidea: Thalassinidae). The Raffles Bulletin of Zoology, 20, 121-158.

Sakai, K., & Türkay, M. (2012). A review of the species of the genus Thalassina (Thalassinidea, Thalassinidae). Crustaceana, 85(11), 1339–1376. doi:10.1163/15685403-00003114.

Lin, F. J., Komai, T., & Chan, T. Y. (2016). A new mud lobster of the genus Thalassina Latreille, 1806 (Crustacea: Decapoda: Gebiidea: Thalassinidae) from marine seagrass beds in Dongsha (Pratas) Island, South China Sea. Raffles Bulletin of Zoology, 64.

Ali, M. S., Zulfikar, Saputri, M., & Frias, J. C. (2020). Bioturbation of Thalassina anomala and microhabitat in mangrove ecosystem at Sungai Reuleung Leupung Aceh Besar. Journal of Physics: Conference Series, 1460(1), 12063. doi:10.1088/1742-6596/1460/1/012063.

Ngokoed, N., & Ratmuangkhwang, S. (2020). Some biological aspects of mud lobsters, Thalassina spp. in Kampuan mangrove forest, Ranong province. Andaman Coastal Research Station for Development, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.

Johnson, D. S. (1961). The Food and Feeding of the Mud-Lobster, Thalassina anomala (Herbst). Crustaceana, 2(4), 325–326. doi:10.1163/156854061X00455.

Vatcharanon, P., & Naiyanetr, P. (1987). Habitat and morphological adaptation of mud lobster Thalassina anomala (Herbt, 1804). Proceedings of the 25th Kasetsart University Conference, Fisheries Section 3-5 February, 1987, Bangkok, Thailand.

Hossain, M. S., Bujang, J. S., Kamal, A. H. M., Zakaria, M. H., & Muslim, A. M. (2019). Behavioural response of the mud lobster, Thalassina anomala Herbst, 1804 (Decapoda, Gebiidea), to different trapping devices. Crustaceana, 92(3), 353–371. doi:10.1163/15685403-00003869.

Andriesse, J. P., Van Breemen, N., & Blokhuis, W. A. (1973). The influence of mudlobsters (Thalassina anomala) on the development of acid sulphate soils in mangrove swamps in Sarawak (East Malaysia). Acid sulphate soils. Proceedings of the International Symposium, 13-20 August, 1972, Wageningen, Netherlands.

Ashton, E. C., & Macintosh, D. J. (2002). Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia. Forest Ecology and Management, 166(1–3), 111–129. doi:10.1016/S0378-1127(01)00673-9.

Dubey, S. K., Choudhury, A., Chand, B. K., & Trivedi, R. K. (2012). Ecobiological study on burrowing mud lobster Thalassina anomala (Herbst, 1804) (Decapoda: Thalassinidea) in the intertidal mangrove mudflat of deltaic Sundarbans. Exploratory Animal and Medical Research, 2(1), 70-75.

Havanond, S. (1987). Effects of mud lobsters Thalassina anomala Herbst on plant succession in mangrove forests, Thailand. Bulletin of Marine Science, 41(2), 635-636.

Hossain, M. S., Bujang, J. S., & Alam, S. M. R. (2020). Microclimate and distribution of mangrove soil carbon in mud lobster (Thalassina anomala Herbst 1804) mounds. Regional Studies in Marine Science, 40, 101540. doi:10.1016/j.rsma.2020.101540.

Dissanayake, N., & Chandrasekara, U. (2014). Effects of Mangrove Zonation and the Physicochemical Parameters of Soil on the Distribution of Macrobenthic Fauna in Kadolkele Mangrove Forest, a Tropical Mangrove Forest in Sri Lanka. Advances in Ecology, 2014, 1–13. doi:10.1155/2014/564056.

Herbst, J. F. W. (1782). Attempt at a natural history of crabs and crabs: along with a systematic description of their species / by Johann Friedrich Wilhelm Herbst. Gottlieb August Lange, Berlin, Germany. doi:10.5962/bhl.title.62813.

Voroney, P. (2019). Soils for Horse Pasture Management. Horse Pasture Management, 65–79, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-812919-7.00004-4.

Macnae, W. (1969). A General Account of the Fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. Advances in Marine Biology, 6(C), 73–270. doi:10.1016/S0065-2881(08)60438-1.

Stieglitz, T., Ridd, P., & Müller, P. (2000). Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia, 421(1), 69–76. doi:10.1023/A:1003925502665.

Higginbottom, K. B. (1982). Behavioural ecology of the mud crab Helograpsus haswelliannus: agonistic behaviour and burrow. Honours Thesis. University of Adelaide, Adelaide, Australia.

Marsh, JA (1982): Aspects of the ecology of three saltmarshes of the Derwent Region and an investigation into the role of the Burrowing Crab H. haswellianus (Whitelegge, 1889), BSc (Honours) thesis, University of Tasmania, Hobart.

Richardson, A. M. M., Swain, R., & Wong, V. (1997). The crustacean and molluscan fauna of Tasmanian saltmarshes. Papers and Proceedings - Royal Society of Tasmania, 131, 21–30. doi:10.26749/rstpp.131.21.

Moh, H. H. (2016). Taxonomy, ecology and control of Thalassina mud lobsters on Carey Island and Kelanang shore (Peninsular Malaysia)/Moh Heng Hing. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia.

Macintosh, D. J., Ashton, E. C., & Havanon, S. (2002). Mangrove rehabilitation and intertidal biodiversity: A study in the Ranong mangrove ecosystem, Thailand. Estuarine, Coastal and Shelf Science, 55(3), 331–345. doi:10.1006/ecss.2001.0896.

Zou, Y., & van der Ploeg, M. (2012). A study to determine the soil moisture and temperature dynamics. Bachelor Thesis, Wageningen University, Wageningen, Netherlands.

Moh, H. H., Chong, V. C., & Sasekumar, A. (2015). Distribution and burrow morphology of three sympatric species of Thalassina mud lobsters in relation to environmental parameters on a Malayan mangrove shore. Journal of Sea Research, 95, 75–83. doi:10.1016/j.seares.2014.10.006.

Kartika, W. D., & Patria, M. P. (2012). Nest characteristics of mud lobster Thalassina anomala (Herbst 1804) in Tanjung Jabung Barat, Jambi, Sumatra, Indonesia.

Pillai, G. (1989). Environmental factors limiting the distribution of the mangrove lobster (Thalassina anomala). Agricultural Development in the Pacific Islands in the 90’s, University of the South Pacific Library, Suva, Fiji.

Webb, J. E. (1958). The ecology of Lagos Lagoon I. The lagoons of the Guinea Coast. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 241(683), 307–318. doi:10.1098/rstb.1958.0005.

Takeda, S., & Kurihara, Y. (1987). The effects of burrowing of Helice tridens (De Haan) on the soil of a salt-marsh habitat. Journal of Experimental Marine Biology and Ecology, 113(1), 79–89. doi:10.1016/0022-0981(87)90084-0.

Rudnick, D., Chan, V., & Resh, V. (2005). Morphology and impacts of the burrows of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards (Decapoda, Grapsoidea), in South San Francisco Bay, California, U.S.A. Crustaceana, 78(7), 787–807. doi:10.1163/156854005774445500.

Havanond, S. (2000). Effects of mud lobster (Thalassina anamola) mounds on mangrove succession in Thailand. PhD Thesis, Tokyo University of Agriculture, Tokyo, Japan. doi:10.11501/3170840.

Sasekumar, A. (1974). Distribution of Macrofauna on a Malayan Mangrove Shore. The Journal of Animal Ecology, 43(1), 51. doi:10.2307/3157.

Smith, T. J., Boto, K. G., Frusher, S. D., & Giddins, R. L. (1991). Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science, 33(5), 419–432. doi:10.1016/0272-7714(91)90081-L.

Breitfuss, M. J., Connolly, R. M., & Dale, P. E. R. (2004). Densities and aperture sizes of burrows constructed by Helograpsus haswellianus (Decapoda: Varunidae) in saltmarshes with and without mosquito-control runnels. Wetlands, 24(1), 14–22. doi:10.1672/0277-5212(2004)024[0014:DAASOB]2.0.CO;2.

Grinang, J. ak, & Rusyaidi Amnah, A. F. (2021). Note on Historical Records, Geographical Distribution, and Ecological Characteristics of a Mud Lobster, Thalassina anomala (Herbst, 1804) (Decapoda, Gebiidea, Thalassinidae) in Sarawak, Borneo. Borneo Journal of Resource Science and Technology, 11(2), 19–29. doi:10.33736/bjrst.4058.2021.

Nakamura, T. (1998). Mangrove succession and mud lobster mounds in Ranong, Thailand. Phuket Marine Biological Center Special Publication, 20, 21-36.

Kiruba-Sankar, R., Krishnan, P., Dam Roy, S., Raymond Jani Angel, J., Goutham-Bharathi, M. P., Lohith Kumar, K., Ragavan, P., Kaliyamoorthy, M., Muruganandam, R., Rajakumari, S., Purvaja, R., & Ramesh, R. (2018). Structural complexity and tree species composition of mangrove forests of the Andaman Islands, India. Journal of Coastal Conservation, 22(2), 217–234. doi:10.1007/s11852-017-0588-3.

Tomiczek, T., Wargula, A., Lomónaco, P., Goodwin, S., Cox, D., Kennedy, A., & Lynett, P. (2020). Physical model investigation of mid-scale mangrove effects on flow hydrodynamics and pressures and loads in the built environment. Coastal Engineering, 162. doi:10.1016/j.coastaleng.2020.103791.

Nozarpour, R., Shojaei, M. G., Naderloo, R., & Nasi, F. (2023). Crustaceans functional diversity in mangroves and adjacent mudflats of the Persian Gulf and Gulf of Oman. Marine Environmental Research, 186, 105919. doi:10.1016/j.marenvres.2023.105919.

Katrak, G., Dittmann, S., & Seuront, L. (2008). Spatial variation in burrow morphology of the mud shore crab Helograpsus haswellianus (Brachyura, Grapsidae) in South Australian saltmarshes. Marine and Freshwater Research, 59(10), 902–911. doi:10.1071/MF08044.

Bertness, M. D., & Miller, T. (1984). The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh. Journal of Experimental Marine Biology and Ecology, 83(3), 211–237. doi:10.1016/S0022-0981(84)80002-7.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mullica Jaroensutasinee