A Hybrid Approach to Detect and Identify Text in Picture
Abstract
Doi: 10.28991/ESJ-2024-08-01-016
Full Text: PDF
Keywords
References
Agrahari, A., & Ghosh, R. (2020). Multi-Oriented Text Detection in Natural Scene Images Based on the Intersection of MSER with the Locally Binarized Image. Procedia Computer Science, 171, 322–330. doi:10.1016/j.procs.2020.04.033.
Inkeaw, P., Bootkrajang, J., Charoenkwan, P., Marukatat, S., Ho, S. Y., & Chaijaruwanich, J. (2018). Recognition-based character segmentation for multi-level writing style. International Journal on Document Analysis and Recognition, 21(1–2), 21–39. doi:10.1007/s10032-018-0302-5.
Epshtein, B., Ofek, E., & Wexler, Y. (2010). Detecting text in natural scenes with stroke width transform. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, California, United States. doi:10.1109/cvpr.2010.5540041.
Jung, K., Kim, K. I., & Jain, A. K. (2004). Text information extraction in images and video: A survey. Pattern Recognition, 37(5), 977–997. doi:10.1016/j.patcog.2003.10.012.
Jain, R., & Gianchandani, D. (2018). A Hybrid Approach for Detection and Recognition of Traffic Text Sign using MSER and OCR. 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). doi:10.1109/i-smac.2018.8653761.
Di Justo, P. (2015). Raspberry Pi or Arduino Uno? One Simple Rule to Choose the Right Board. Make Magazine. Available online: https://makezine.com/article/technology/arduino/admittedly-simplistic-guide-raspberry-pi-vs-arduino/ (accessed on January 2024).
Perez-Delgado, M. L., & Roman Gallego, J. A. (2019). A hybrid color quantization algorithm that combines the greedy orthogonal bi-partitioning method with artificial ants. IEEE Access, 7, 128714–128734. doi:10.1109/ACCESS.2019.2937934.
Zhao, Q. J., Cao, P., & Meng, Q. X. (2014). Image capturing and segmentation method for characters marked on hot billets. Advanced Materials Research, 945–949, 1830–1836. doi:10.4028/www.scientific.net/AMR.945-949.1830.
Modi, H., & C., M. (2017). A Review on Optical Character Recognition Techniques. International Journal of Computer Applications, 160(6), 20–24. doi:10.5120/ijca2017913061.
Marial, A., & Jos, J. (2017). Feature extraction of optical character recognition: Survey. International Journal of Applied Engineering Research, 12(7), 1129-1137.
Zhao, M., Li, S., & Kwok, J. (2010). Text detection in images using sparse representation with discriminative dictionaries. Image and Vision Computing, 28(12), 1590–1599. doi:10.1016/j.imavis.2010.04.002.
Sabu, A. M., & Das, A. S. (2018). A Survey on various Optical Character Recognition Techniques. 2018 Conference on Emerging Devices and Smart Systems (ICEDSS). doi:10.1109/icedss.2018.8544323.
Jain, N. & Gera, D. (2015). Comparison of Text Extraction Techniques- A Review. International Journal of Innovative Research in Computer and Communication Engineering, 03(02), 621–626. doi:10.15680/ijircce.2015.0302003.
Rafi, A. M. (2014). Text Extraction from Images Using Connected Component Method. Journal of Artificial Intelligence Research & Advances, 1(2).
Hamzh, A.R.E.M. (2016). Object Recognition using Image Processing. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 4(11), 61–64. doi:10.17148/ijireeice.2016.41111.
Anjna, E., & Kaur, E. R. (2017). Review of image segmentation technique. International Journal of Advanced Research in Computer Science, 8(4), 36-39.
Nikam, V. S., & Yawalkar, P. M. (2015). Binarization Technique on Historical Documents using Edge Width Detection. International Journal on Recent and Innovation Trends in Computing and Communication, 3(6), 3793–3798.
Taneja, A., Ranjan, P., & Ujjlayan, A. (2015). A performance study of image segmentation techniques. 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida, India. doi:10.1109/icrito.2015.7359305.
Mahalakshmi, V., Bennet, M., Hemaladha, R., Jenitta, J., & Vijayabharathi, K. (2018). Implementation of OCR using raspberry PI for visually impaired person. International Journal of Pure and Applied Mathematics, 119(15), 111-117.
Prum, S. (2017). Text-zone Detection and Rectification in Document Images Captured by Smartphone. Proceedings of the First EAI International Conference on Computer Science and Engineering, Penang, Malaysia. doi:10.4108/eai.27-2-2017.152342.
Manwatkar, P. M., & Singh, K. R. (2015). A technical review on text recognition from images. 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India. doi:10.1109/isco.2015.7282362.
Juang, J.-G., Tsai, Y.-J., & Fan, Y.-W. (2015). Visual Recognition and Its Application to Robot Arm Control. Applied Sciences, 5(4), 851–880. doi:10.3390/app5040851.
Kumar, D., & Ramakrishnan, A. G. (2014). Methods for text segmentation from scene images. ELCVIA Electronic Letters on Computer Vision and Image Analysis, 13(2), 32. doi:10.5565/rev/elcvia.591.
Casillano, N. F. B. (2019). Utilization of Optical Character Recognition (OCR) in the development of a Number System Converter Application. Indian Journal of Science and Technology, 12(16), 1–5. doi:10.17485/ijst/2019/v12i16/137794.
Nagaraja, L., Nagarjun, R. S., Nishanth, M. A., Nithin, D., & Veena, S. M. (2015). Vision based text recognition using raspberry PI. International Journal of Computer Applications, 975, 8887.
Ramesh, N., Srivastava, A., & Deeba, K. (2018). Improving optical character recognition techniques. International Journal of Engineering and Technology (UAE), 7(2), 361–364. doi:10.14419/ijet.v7i2.24.12085.
Hamad, K., & Kaya, M. (2016). A Detailed Analysis of Optical Character Recognition Technology. International Journal of Applied Mathematics, Electronics and Computers, 4(Special Issue-1), 244–244. doi:10.18100/ijamec.270374.
Bansal, D.S. (2018). Techniques of Text Detection and Recognition: A Survey. International Journal of Emerging Research in Management and Technology, 6(6), 83-87. doi:10.23956/ijermt.v6i6.250.
Choudhary, A., Rishi, R., & Ahlawat, S. (2013). A new approach to detect and extract characters from off-line printed images and text. Procedia Computer Science, 17, 434–440. doi:10.1016/j.procs.2013.05.056.
Pal Singh, D., & Khare, A. (2015). Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm. International Journal of Image, Graphics and Signal Processing, 7(2), 39–47. doi:10.5815/ijigsp.2015.02.06.
Kadam, M. P. B., & Desai, L. R. (2014). A Hybrid Approach to Detect and Recognize Text In Images. IOSR Journal of Engineering, 4(7), 13–19. doi:10.9790/3021-04741319.
DOI: 10.28991/ESJ-2024-08-01-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Wydyanto Wydyanto, Norshita Mat Nayan, Riza Sulaiman, DESHINTA ARROVA DEWI, Tri Basuki Kurniawan