Down-streaming Small-Scale Green Ammonia to Nitrogen-Phosphorus Fertilizer Tablets for Rural Communities

Raldi H. Koestoer, Tri Ligayanti, Sutrasno Kartohardjono, Harris Susanto

Abstract


This study aims to evaluate the growth and production of sweet corn plants in response to the application of commercial NPK fertilizer and various doses of nitrogen-phosphorus fertilizer tablets. From early October 2022 to late January 2023, research was conducted at Research and Development Luas Birus Utama to produce nitrogen-phosphorus fertilizer tablets and at Research and Development Syngenta Indonesia Cikampek Station, Karawang, to perform a semi-field analysis. A factorial randomized block design with two treatment factors was employed in this study. The first factor was five types of nitrogen-phosphorus fertilizer tablets, namely, A (0% nitrogen and 6.3% phosphorus), B (0.81% nitrogen and 6.3% phosphorus), C (1.57% nitrogen and 6.1% phosphorus), D (2.33% nitrogen and 6.2% phosphorus), and E (3.06% nitrogen and 6.2% phosphorus). The second factor was F (standard nitrogen, phosphorus, and potassium). The results revealed that applying different dosages of nitrogen-phosphorus fertilizer tablets in combination with potassium chloride fertilizer yielded no different effect on the growth, biomass, and yield components of sweet corn plants when compared to applying NPK fertilizer. A comparison between the soil test results before and after application revealed that the formulation of fertilizers in tablet form helps plants to effectively absorb the required nutrients. It is currently possible to develop small-scale or microscale green ammonia production technology to fulfill the fertilizer requirements of rural communities because of its low cost, low carbon emissions, and low renewable energy consumption. The scarcity of fertilizer supplies endangers Indonesia’s food sustainability. Nitrogen-phosphorus fertilizer tablet production technology can be used in areas with a scarcity of inorganic fertilizers but with the potential for low-grade phosphate mines using commercial ammonia solutions. Thus, understanding how to produce nitrogen-phosphorus fertilizer tablets from ammonia solution will aid in the acceptance of microscale green ammonia production technology.

 

Doi: 10.28991/ESJ-2024-08-02-016

Full Text: PDF


Keywords


Down-Streaming; Small-Scale Green Ammonia; Nitrogen–phosphorus (NP) Fertilizer Tablet; Semi-Field Study; Sweet Corn.

References


Leech, H., & Jordan, V. (1932). The Paradox of Plenty. Whittlesey House, New York, United States.

Afzal, A., Hasnaoui, J., Noor, R., & Banerjee, A. (2023). Is saving the non-renewable resources worthwhile? Evidence of paradox of plenty on human capital development. Resources Policy, 83, 103728. doi:10.1016/j.resourpol.2023.103728.

Coltrain, D., Barton, D., & Boland, M. (2000). Value added: opportunities and strategies. Arthur Capper Cooperative Center, Department of Agricultural Economics, Kansas State University. Kansas City, United States.

Schumacher, E. F. (1973). Small is beautiful: economics as if people mattered. Harper & Row, New York, United States.

Osorio-Tejada, J. L., Rebrov, E., & Hessel, V. (2023). Internalization of environmental costs of decentralized nitrogen fertilisers’ production. The International Journal of Life Cycle Assessment, 28(11), 1590–1603. doi:10.1007/s11367-023-02187-5.

Bardi, U., El Asmar, T., & Lavacchi, A. (2013). Turning electricity into food: The role of renewable energy in the future of agriculture. Journal of Cleaner Production, 53, 224–231. doi:10.1016/j.jclepro.2013.04.014.

Lynch, J., Cain, M., Frame, D., & Pierrehumbert, R. (2021). Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 4, 518039. doi:10.3389/fsufs.2020.518039.

Finch, S., Samuel, A., & Lane, G. P. (2014). Lockhart and wiseman’s crop husbandry including grassland. Elsevier, Amsterdam, Netherlands.

Bramsiepe, C., Sievers, S., Seifert, T., Stefanidis, G. D., Vlachos, D. G., Schnitzer, H., Muster, B., Brunner, C., Sanders, J. P. M., Bruins, M. E., & Schembecker, G. (2012). Low-cost small scale processing technologies for production applications in various environments-Mass produced factories. Chemical Engineering and Processing: Process Intensification, 51, 32–52. doi:10.1016/j.cep.2011.08.005.

Ghavam, S., Vahdati, M., Wilson, I. A. G., & Styring, P. (2021). Sustainable Ammonia Production Processes. Frontiers in Energy Research, 9, 580808. doi:10.3389/fenrg.2021.580808.

Siddiqui, O., & Dincer, I. (2021). Optimization of a new renewable energy system for producing electricity, hydrogen and ammonia. Sustainable Energy Technologies and Assessments, 44, 101023. doi:10.1016/j.seta.2021.101023.

Li, Y., Westlund, H., & Liu, Y. (2019). Why some rural areas decline while some others not: An overview of rural evolution in the world. Journal of Rural Studies, 68, 135–143. doi:10.1016/j.jrurstud.2019.03.003.

Baswir, R. (2009). People's Economic Manifesto. Pustaka Pelajar, Yogyakarta, Indonesia. (In Indonesian).

Abdullah, F. (2021). Corona Virus and the Quest for Moral Economy: Islamic Response. AZKA International Journal of Zakat & Social Finance, 2(2), 53–71. doi:10.51377/azjaf.vol2no2.60.

Baswir, R. (2015). People's Economy vs. People's Economy Neoliberalism. Echoes of Justice, 2(1), 8–17. doi:10.14710/gk.2015.3713.

Vinardell, S., Nicolas, P., Sastre, A. M., Cortina, J. L., & Valderrama, C. (2023). Sustainability Assessment of Green Ammonia Production to Promote Industrial Decarbonization in Spain. ACS Sustainable Chemistry & Engineering, 11(44), 15975–15983. doi:10.1021/acssuschemeng.3c04694.

Kurien, C., & Mittal, M. (2023). Utilization of green ammonia as a hydrogen energy carrier for decarbonization in spark ignition engines. International Journal of Hydrogen Energy, 48(74), 28803–28823. doi:10.1016/j.ijhydene.2023.04.073.

Adeli, K., Nachtane, M., Faik, A., Saifaoui, D., & Boulezhar, A. (2023). How Green Hydrogen and Ammonia Are Revolutionizing the Future of Energy Production: A Comprehensive Review of the Latest Developments and Future Prospects. Applied Sciences (Switzerland), 13(15), 8711. doi:10.3390/app13158711.

Singh, H., & Reddy, M. S. (2011). Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 47(1), 30–34. doi:10.1016/j.ejsobi.2010.10.005.

Lukiwati, D. R., Kusmiyati, F., Yafizham, & Anwar, S. (2019). Improvement of plant growth and production of waxy corn with organic-NP Enriched manure and inorganic fertilizer in Sragen District of Central Java Indonesia. IOP Conference Series: Earth and Environmental Science, 292(1), 12056. doi:10.1088/1755-1315/292/1/012056.

Purwono, & Hartono, R. (2010). Planting Superior Corn. Penebar Swadaya, Jakarta, Indonesia. (In Indonesian).

Rukmana, I. H. R. (1997). Corn Farming Business (1st Ed.). Yogyakarta Kanisius, Yogyakarta, Indonesia. (In Indonesian).

Yafizham, Lukiwati, D. R., & Slamet, W. (2021). Improvement of plant growth and production of sweet corn with organic-N and nature-P enriched manure and inorganic fertilizer in Batang District of Central Java Indonesia. IOP Conference Series: Earth and Environmental Science, 803(1), 12016. doi:10.1088/1755-1315/803/1/012016.

Ghavam, S., Taylor, C. M., & Styring, P. (2021). The life cycle environmental impacts of a novel sustainable ammonia production process from food waste and brown water. Journal of Cleaner Production, 320, 128776. doi:10.1016/j.jclepro.2021.128776.

Vrijenhoef, J. P. (2017). Opportunities for small scale ammonia production. 29 June, 2017, London, United Kingdom.

Nowatzki, J. (2008). Anhydrous Ammonia: Managing the Risks. North Dakota State University, Fargo, United States.

Shutske, J. M. (1996). Using anhydrous ammonia safely on the farm. Minnesota Extension Service, University of Minnesota, Minneapolis, United States.

Papavinasam, S. (2014). Oil and Gas Industry Network. Corrosion Control in the Oil and Gas Industry, 41–131, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-397022-0.00002-9.

Afitin, R.-, & Darmanti, S.-. (2012). Effect of Compost Dosage with Trichoderma Stimulator on Growth and Production of Corn (zea mays l.) Pioneer-11 Varieties on Dry Land. Biomes: Biological Scientific Periodicals, 11(2), 69. doi:10.14710/bioma.11.2.69-75.

Lakitan, B. (1996). Physiology of Plant Growth and Development. PT Raja Grafindo Persada, Jakarta, Indonesia. (In Indonesian).

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2017). Physiology of crop plants. Scientific Publishers, Jodhpur, India.

Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2016). Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00719.

Sitompul, S. M., & Guritno, B. (1995). Plant growth analysis. Gadjah Mada University Press, Yogyakarta, Indonesia. (In Indonesian).

Yoseva, S., & Hartanti, I. (2014). The Effect of Providing Mycorrhizal Biological Fertilizer and Rock Phosphate on the Growth and Production of Sweet Corn (Zea Mays Saccharata Sturt). Universitas Riau, Pekanbaru City, Indonesia. (In Indonesian).

Beadle, C. L. (1993). Growth analysis. Photosynthesis and Production in a Changing Environment. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-011-1566-7_3.

Sutoro, Y., & Soeleman, I. (1988). Cultivation of Corn Plants. Puslitbang Tanaman Pangan, Bogor, Indonesia. (In Indonesian).

Alfian, M. S., & Purnamawati, H. (2019). Dosage and Time of Application of Potassium Fertilizer on the Growth and Production of Sweet Corn at BBPP Batangkaluku, Gowa Regency, South Sulawesi. Agrohorti Bulletin, 7(1), 8–15. doi:10.29244/agrob.v7i1.24404. (In Indonesian).

Tukey, J. (1953). Multiple comparisons. Journal of the American Statistical Association, 48(263), 624-625.

Utomo, W. H. (1985). Basics of Soil Physics. Jurusan Tanah. Fakultas Pertanian, Universitas Brawijaya, Malang, Indonesia. (In Indonesian).

Eka Putri, R., Yahya, A., Adam, N. M., & Abd Aziz, S. (2016). Variability of Rice Yield with Respect to Crop Health. Jurnal Teknologi, 78(1–2). doi:10.11113/jt.v78.7272.

Gani, B. A., Asmah, N., Soraya, C., Syafriza, D., Rezeki, S., Nazar, M., ... & Soedarsono, N. (2023). Characteristics and antibacterial properties of film membrane of chitosan-resveratrol for wound dressing. Emerging Science Journal, 7(3), 821-842. doi:10.28991/ESJ-2023-07-03-012.

Nio Song, A., & Banyo, Y. (2011). Leaf Chlorophyll Concentration as an Indicator of Water Shortage in Plants. Scientific Journal of Science, 15(1), 166. doi:10.35799/jis.11.2.2011.202. (In Indonesian).

Sutedjo, M. (2002). Fertilizer and Fertilizing Methods. Rineka Cipta, Jakarta, Indonesia. (In Indonesian).

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2017). Physiology of crop plants. Scientific publishers, Jodhpur, India.

Nurdin, N. (2011). Use of dry land in the Limboto Watershed, Gorontalo Province for sustainable agriculture. Journal of Agricultural Research and Development, 30(3), 98-107.

Benjamin, B. D., Roja, P. C., Heble, M. R., & Chadha, M. S. (1987). Multiple Shoot Cultures of Atropa belladonna: Effect of Physico-Chemical Factors on Growth and Alkaloid Formation. Journal of Plant Physiology, 129(1–2), 129–135. doi:10.1016/S0176-1617(87)80109-8.

Azanza, F., Juvik, J. A., & Klein, B. P. (1994). Relationships Between Sensory Quality Attributes and Kernel Chemical Composition of Fresh‐Frozen Sweet Corn. Journal of Food Quality, 17(2), 159–172. doi:10.1111/j.1745-4557.1994.tb00140.x.

Syamsiyah, J., Herdiansyah, G., Aisyah, N., Mentari, F. C., & Larasati, I. (2021). Combined application of organic and inorganic fertilizer on Alfisol soil fertility and maize growth. IOP Conference Series: Earth and Environmental Science, 824(1), 12025. doi:10.1088/1755-1315/824/1/012025.

Jagadeeswaran, R., Murugappan, V., & Govindaswamy, M. (2008). Effect of slow release multi-nutrient fertilizers on the yield and nutrient uptake in turmeric (Curcuma longa L.). Journal of Applied Horticulture, 10(2), 100–105. doi:10.37855/jah.2008.v10i02.21.

Fasihi, M., Weiss, R., Savolainen, J., & Breyer, C. (2021). Global potential of green ammonia based on hybrid PV-wind power plants. Applied Energy, 294, 116170. doi:10.1016/j.apenergy.2020.116170.

Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639. doi:10.1038/ngeo325.

Smith, C., Hill, A. K., & Torrente-Murciano, L. (2020). Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 13(2), 331–344. doi:10.1039/c9ee02873k.

Chebrolu, V. T., Jang, D., Rani, G. M., Lim, C., Yong, K., & Kim, W. B. (2023). Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 5(12), 361. doi:10.1002/cey2.361.

Olabi, A. G., Abdelkareem, M. A., Al-Murisi, M., Shehata, N., Alami, A. H., Radwan, A., Wilberforce, T., Chae, K. J., & Sayed, E. T. (2023). Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 277, 116594. doi:10.1016/j.enconman.2022.116594.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-02-016

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Tri Ligayanti, Raldi Hendro Koestoer, Sutrasno Kartohardjono, Harris Susanto