Monitoring Agricultural Land Loss by Analyzing Changes in Land Use and Land Cover

Morakot Worachairungreung, Nayot Kulpanich, Kunyaphat Thanakunwutthirot, Phonpat Hemwan


The agricultural sector's output holds paramount significance for the global population, serving as an indispensable resource for survival and consumption. Consequently, alterations in agricultural landscapes bear substantial implications for the world's food supply. The objectives of this research are to investigate the depletion of agricultural land, with a specific focus on Samut Songkhram Province—an agriculturally prominent region in Thailand renowned for supplying seafood and fruits to Bangkok. By employing advanced remote sensing and change detection methods and incorporating indices like NDVI, NDWI, and NDBI, the study meticulously analyzed land-use changes. The outcomes were rigorously scrutinized through supervised classification, validated by on-site inspections, and corroborated with data from pertinent agencies. Findings revealed that Samut Songkhram had sustained its prominence in agricultural land, constituting around 70% of the province's total area over the past two decades. However, this expanse has undergone persistent transformation during the last 20 years. Notably, the most substantial surge was observed in the conversion of agricultural land to urban and developed areas, particularly in the urban zones of Amphawa District, followed by Mueang Samut Songkhram and Bang Khonthi districts. This investigation illuminates a consistent downward trend in agricultural land, a vital source of sustenance for Thailand's population and the global community.


Doi: 10.28991/ESJ-2024-08-02-020

Full Text: PDF


Agricultural Land; Change Detection; LU/LC; Image Classification; Samut Songkram, Thailand.


OECD -FAO. (2021). Organisation for Economic Co-operation and Development and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021-2030. OECD Publishing, Paris, France. doi:10.1787/agr_outlook-2017-en.

Grace, K., Husak, G., & Bogle, S. (2014). Estimating agricultural production in marginal and food insecure areas in Kenya using very high resolution remotely sensed imagery. Applied Geography, 55, 257–265. doi:10.1016/j.apgeog.2014.08.014.

Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold, F., Bonifacio, R., Zappacosta, M., Budde, M., Magadzire, T., Shitote, C., Pound, J., Constantino, A., Nakalembe, C., Mwangi, K., Sobue, S., Newby, T., Whitcraft, A., Jarvis, I., & Verdin, J. (2020). Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning. Remote Sensing of Environment, 237(6). doi:10.1016/j.rse.2019.111553.

Smith, L., López Sánchez, G. F., Oh, H., Rahmati, M., Tully, M. A., Yon, D. K., Butler, L., Barnett, Y., Ball, G., Shin, J. I., & Koyanagi, A. (2023). Association between food insecurity and depressive symptoms among adolescents aged 12-15 years from 22 low- and middle-income countries. Psychiatry Research, 328, 115485. doi:10.1016/j.psychres.2023.115485.

Kaggwa, M. M., Akatussasira, R., Al-Mamun, F., Prat, S., Mamun, M. A., Combey, I., Bongomin, F., Harms, S., Chaimowitz, G., Griffiths, M. D., & Olagunju, A. T. (2023). The global burden of suicidal behavior among people experiencing food insecurity: A systematic review and meta-analysis. Journal of Affective Disorders, 342, 91–120. doi:10.1016/j.jad.2023.09.012.

Behera, B., Haldar, A., & Sethi, N. (2023). Agriculture, food security, and climate change in South Asia: a new perspective on sustainable development. Environment, Development and Sustainability. doi:10.1007/s10668-023-03552-y.

Nicholson, C. F., Stephens, E. C., Jones, A. D., Kopainsky, B., Parsons, D., & Garrett, J. (2021). Food security outcomes in agricultural systems models: Current status and recommended improvements. Agricultural Systems, 188, 103028. doi:10.1016/j.agsy.2020.103028.

Srisomyong, N., & Meyer, D. (2015). Political economy of agritourism initiatives in Thailand. Journal of Rural Studies, 41, 95–108. doi:10.1016/j.jrurstud.2015.07.007.

Department of Intellectual Property. (2021). Information and Sources of GI Thailand Products in 77 Provinces Thai Geographic Indications. Department of Intellectual Property, Bangkok, Thailand.

Worachairungreung, M., Thanakunwutthirot, K., & Kulpanich, N. (2023). a Study on Oil Palm Classification for Ranong Province Using Data Fusion and Machine Learning Algorithms. Geographia Technica, 18(1), 161–176. doi:10.21163/GT_2023.181.12.

Das, S., & Angadi, D. P. (2022). Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: a micro-level study. GeoJournal, 87(3), 2101–2123. doi:10.1007/s10708-020-10359-1.

Cao, G., Zhou, L., & Li, Y. (2016). A new change-detection method in high-resolution remote sensing images based on a conditional random field model. International Journal of Remote Sensing, 37(5), 1173–1189. doi:10.1080/01431161.2016.1148284.

Dibs, H., Jaber, H. S., & Al-Ansari, N. (2023). Multi-Fusion algorithms for Detecting Land Surface Pattern Changes Using Multi-High Spatial Resolution Images and Remote Sensing Analysis. Emerging Science Journal, 7(4), 1215–1231. doi:10.28991/ESJ-2023-07-04-013.

Narayani, A. R., & Nagalakshmi, R. (2023). Assessing spatiotemporal changes in landcover using geospatial and remote sensing techniques in the Southern fringes of Chennai. Environmental Monitoring and Assessment, 195(11), 1310. doi:10.1007/s10661-023-11882-7.

Alam, K. F., & Ahamed, T. (2022). Assessment of Land Use Land Cover Changes for Predicting Vulnerable Agricultural Lands in River Basins of Bangladesh Using Remote Sensing and a Fuzzy Expert System. Remote Sensing, 14(21), 5582. doi:10.3390/rs14215582.

Yan, H., Liu, J., Huang, H. Q., Tao, B., & Cao, M. (2009). Assessing the consequence of land use change on agricultural productivity in China. Global and Planetary Change, 67(1–2), 13–19. doi:10.1016/j.gloplacha.2008.12.012.

Mottet, A., Ladet, S., Coqué, N., & Gibon, A. (2006). Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agriculture, Ecosystems and Environment, 114(2–4), 296–310. doi:10.1016/j.agee.2005.11.017.

Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241. doi:10.1146/

Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49(3), 224–234. doi:10.1016/0034-4257(94)90018-3.

Eisfelder, C., Asam, S., Hirner, A., Reiners, P., Holzwarth, S., Bachmann, M., Gessner, U., Dietz, A., Huth, J., Bachofer, F., & Kuenzer, C. (2023). Seasonal Vegetation Trends for Europe over 30 Years from a Novel Normalised Difference Vegetation Index (NDVI) Time-Series—The TIMELINE NDVI Product. Remote Sensing, 15(14), 3616. doi:10.3390/rs15143616.

Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. doi:10.1016/S0034-4257(96)00067-3.

Du, Z., Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., Gui, Y., & Sun, B. (2014). Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, 5(7), 672–681. doi:10.1080/2150704X.2014.960606.

Kulpanich, N., Worachairungreung, M., Waiyasusri, K., Sae-Ngow, P., Chaysmithikul, P., & Thanakunwutthirot, K. (2023). Relationship between Urbanization and Road Networks in the Lower Northeastern Region of Thailand Using Nighttime Light Satellite Imagery. Geography, Environment, Sustainability, 15(4), 124–133. doi:10.24057/2071-9388-2021-096.

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. doi:10.1080/01431160304987.

Dibs, H., Ali, A. H., Al-Ansari, N., & Abed, S. A. (2023). Fusion Landsat-8 Thermal TIRS and OLI Datasets for Superior Monitoring and Change Detection using Remote Sensing. Emerging Science Journal, 7(2), 428–444. doi:10.28991/ESJ-2023-07-02-09.

Velayarce, D., Alvarez, M., Guevara, D., & Murray, V. (2021). Analysis of Deforestation in Ucayali-Peru Using Satellite Imagery from Sentinel-2. Smart Innovation, Systems and Technologies, 233, 308–316. doi:10.1007/978-3-030-75680-2_35.

Zhai, J., Xiao, C., Feng, Z., & Liu, Y. (2022). Spatio-Temporal Patterns of Land-Use Changes and Conflicts between Cropland and Forest in the Mekong River Basin during 1990–2020. Land, 11(6). doi:10.3390/land11060927.

Mohammadyari, F., Tavakoli, M., Zarandian, A., & Abdollahi, S. (2023). Optimization land use based on multi-scenario simulation of ecosystem service for sustainable landscape planning in a mixed urban - Forest watershed. Ecological Modelling, 483, 110440. doi:10.1016/j.ecolmodel.2023.110440.

Ayambire, R. A., Amponsah, O., Peprah, C., & Takyi, S. A. (2019). A review of practices for sustaining urban and peri-urban agriculture: Implications for land use planning in rapidly urbanising Ghanaian cities. Land Use Policy, 84, 260–277. doi:10.1016/j.landusepol.2019.03.004.

Gandharum, L., Hartono, D. M., Karsidi, A., & Ahmad, M. (2022). Monitoring Urban Expansion and Loss of Agriculture on the North Coast of West Java Province, Indonesia, Using Google Earth Engine and Intensity Analysis. Scientific World Journal, 2022(1), 1–16. doi:10.1155/2022/3123788.

Li, L., Huang, X., & Yang, H. (2023). Scenario-based urban growth simulation by incorporating ecological-agricultural-urban suitability into a Future Land Use Simulation model. Cities, 137, 104334. doi:10.1016/j.cities.2023.104334.

Wu, X., Hu, Y., He, H., Xi, F., & Bu, R. (2010). Study on forecast scenarios for simulation of future urban growth in Shenyang City based on SLEUTH model. Geo-Spatial Information Science, 13(1), 32–39. doi:10.1007/s11806-010-0155-7.

Karthikeyan, L., Chawla, I., & Mishra, A. K. (2020). A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 586, 124905. doi:10.1016/j.jhydrol.2020.124905.

Abijith, D., & Saravanan, S. (2022). Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environmental Science and Pollution Research, 29(57), 86055–86067. doi:10.1007/s11356-021-15782-6.

Hu, Y., Raza, A., Syed, N. R., Acharki, S., Ray, R. L., Hussain, S., Dehghanisanij, H., Zubair, M., & Elbeltagi, A. (2023). Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province. Sustainability (Switzerland), 15(4), 3572. doi:10.3390/su15043572.

Wang, S. W., Gebru, B. M., Lamchin, M., Kayastha, R. B., & Lee, W. K. (2020). Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability (Switzerland), 12(9), 3925. doi:10.3390/su12093925.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-02-020


  • There are currently no refbacks.

Copyright (c) 2024 Morakot Worachairungreung, Nayot Kulpanich, Kunyaphat Thanakunwutthirot, Phonpat Hemwan