A Hybrid Ant Colony and Grey Wolf Optimization Algorithm for Exploitation-Exploration Balance

Joan Angelina Widians, Retantyo Wardoyo, Sri Hartati

Abstract


The Ant Colony Optimization (ACO) and Grey Wolf Optimizer (GWO) are well-known nature-inspired algorithms. ACO is a metaheuristic search algorithm that takes inspiration from the behavior of real ants. In contrast, GWO is a grey wolf population-based heuristic algorithm. The important procedure in optimization is exploration and exploitation. ACO has excellent global and local search capabilities, and the exploration process is performed better than the exploitation process. In the case of regular, GWO is a greatly competitive algorithm compared to other common meta-heuristic algorithms, as it has super performance in the exploitation phase. This study proposed hybrid ACO and GWO algorithms. This hybridization is to acquire the balance between exploitation and exploration in optimization Swarm Intelligence algorithm—comprehensive examination using CEC 2014 benchmark functions. Detail investigations indicate that ACO-GWO could find solutions to unimodal, multi-modal, and hybrid problems in evaluation functions. The results show that the ACO-GWO algorithm outperforms its predecessors in several benchmark function cases. In addition, the proposed ACO-GWO algorithm could achieve an exploitation-exploration balance. Even though ACO-GWO has one disadvantage: since ACO-GWO directly combines two algorithms (ACO and GWO) with two different agents, it has superior demands on computational complexity.

 

Doi: 10.28991/ESJ-2024-08-04-023

Full Text: PDF


Keywords


Ant Colony Optimization; Grey Wolf Optimizer; Swarm Intelligence; Exploitation-Exploration Balance; Optimization.

References


Brezočnik, L., Fister, I., & Podgorelec, V. (2018). Swarm intelligence algorithms for feature selection: A review. Applied Sciences (Switzerland), 8(9), 1521. doi:10.3390/app8091521.

El-Kenawy, E. S., & Eid, M. (2020). Hybrid grey wolf and particle swarm optimization for feature selection. International Journal of Innovative Computing, Information and Control, 16(3), 831–844. doi:10.24507/ijicic.16.03.831.

Mirjalili, S. (2019). Ant colony optimization. Studies in Computational Intelligence, 780(November), 33–42. doi:10.1007/978-3-319-93025-1_3.

Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. Neural Computing and Applications, 30(2), 413–435. doi:10.1007/s00521-017-3272-5.

Shen, C., & Zhang, K. (2022). Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex & Intelligent Systems, 8(4), 2769–2789. doi:10.1007/s40747-021-00452-4.

Sharma, R., Marikkannu, P., & Sungheetha, A. (2019). Three-dimensional MRI brain tumour classification using hybrid ant colony optimization and Grey Wolf optimiser with proximal support vector machine. International Journal of Biomedical Engineering and Technology, 29(1), 34–45. doi:10.1504/IJBET.2019.096879.

Kyaw, K. S., & LIMSIRORATANA, S. (2019). Traditional and Swarm Intelligent Based Text Feature Selection for Document Classification. 2019 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam. doi:10.1109/iscit.2019.8905200.

Menghour, K., & Souici-Meslati, L. (2016). Hybrid ACO-PSO based approaches for feature selection. International Journal of Intelligent Engineering and Systems, 9(3), 65–79. doi:10.22266/ijies2016.0930.07.

Ghosh, M., Guha, R., Sarkar, R., & Abraham, A. (2020). A wrapper-filter feature selection technique based on ant colony optimization. Neural Computing and Applications, 32(12), 7839–7857. doi:10.1007/s00521-019-04171-3.

Wang, Z., Gao, S., Zhou, M., Sato, S., Cheng, J., & Wang, J. (2023). Information-Theory-based Nondominated Sorting Ant Colony Optimization for Multiobjective Feature Selection in Classification. IEEE Transactions on Cybernetics, 53(8), 5276–5289. doi:10.1109/tcyb.2022.3185554.

Jona, J. B., & Nagaveni, N. (2014). Ant-cuckoo colony optimization for feature selection in digital mammogram. Pakistan Journal of Biological Sciences, 17(2), 266–271. doi:10.3923/pjbs.2014.266.271.

Wang, H., Hu, Z., Yang, Z., & Guo, Y. (2020). A Novel Grey Wolf Optimization Based Combined Feature Selection Method. Bio-inspired Computing: Theories and Applications, BIC-TA 2019, Communications in Computer and Information Science, vol 1159, Springer, Singapore. doi:10.1007/978-981-15-3425-6_45.

Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917. doi:10.1016/j.eswa.2020.113917.

Mohammed, H., & Rashid, T. (2020). A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 32(18), 14701–14718. doi:10.1007/s00521-020-04823-9.

Purushothaman, R., Rajagopalan, S. P., & Dhandapani, G. (2020). Hybridizing Grey Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering. Applied Soft Computing Journal, 96, 106651. doi:10.1016/j.asoc.2020.106651.

Sharma, S., Kapoor, R., & Dhiman, S. (2021). A Novel Hybrid Metaheuristic Based on Augmented Grey Wolf Optimizer and Cuckoo Search for Global Optimization. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). doi:10.1109/icsccc51823.2021.9478142.

Al-Wajih, R., Abdulkadir, S. J., Aziz, N., Al-Tashi, Q., & Talpur, N. (2021). Hybrid binary grey Wolf with Harris hawks optimizer for feature selection. IEEE Access, 9, 31662–31677. doi:10.1109/ACCESS.2021.3060096.

Hoseini, Z., Varaee, H., Rafieizonooz, M., & Kim, J. H. J. (2022). A New Enhanced Hybrid Grey Wolf Optimizer (GWO) Combined with Elephant Herding Optimization (EHO) Algorithm for Engineering Optimization. Journal of Soft Computing in Civil Engineering, 6(4), 1–42. doi:10.22115/SCCE.2022.342360.1436.

Bhandari, A. S., Kumar, A., & Ram, M. (2023). Reliability optimization and redundancy allocation for fire extinguisher drone using hybrid PSO–GWO. Soft Computing, 27(20), 14819–14833. doi:10.1007/s00500-023-08560-8.

Ahmad, I., Qayum, F., Rahman, S. U., & Srivastava, G. (2024). Using Improved Hybrid Grey Wolf Algorithm Based on Artificial Bee Colony Algorithm Onlooker and Scout Bee Operators for Solving Optimization Problems. International Journal of Computational Intelligence Systems, 17(1), 111. doi:10.1007/s44196-024-00497-6.

Dadaneh, B. Z., Markid, H. Y., & Zakerolhosseini, A. (2016). Unsupervised probabilistic feature selection using ant colony optimization. Expert Systems with Applications, 53, 27–42. doi:10.1016/j.eswa.2016.01.021.

Janaki Meena, M., Chandran, K. R., Karthik, A., & Vijay Samuel, A. (2012). An enhanced ACO algorithm to select features for text categorization and its parallelization. Expert Systems with Applications, 39(5), 5861–5871. doi:10.1016/j.eswa.2011.11.081.

Moradi, P., & Rostami, M. (2015). Integration of graph clustering with ant colony optimization for feature selection. Knowledge-Based Systems, 84, 144–161. doi:10.1016/j.knosys.2015.04.007.

Widians, J. A., Wardoyo, R., & Hartati, S. (2022). A Study on Text Feature Selection Using Ant Colony and Grey Wolf Optimization. 2022 Seventh International Conference on Informatics and Computing (ICIC), Bali, Indonesia. doi:10.1109/icic56845.2022.10007019.

Ma, W., Zhou, X., Zhu, H., Li, L., & Jiao, L. (2021). A two-stage hybrid ant colony optimization for high-dimensional feature selection. Pattern Recognition, 116, 107933. doi:10.1016/j.patcog.2021.107933.

Paniri, M., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2020). MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowledge-Based Systems, 192, 105285. doi:10.1016/j.knosys.2019.105285.

Singh, N., & Singh, S. B. (2017). Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance. Journal of Applied Mathematics, 2017, 1–15. doi:10.1155/2017/2030489.

Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., & Faris, H. (2020). Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications, 32(16), 12201–12220. doi:10.1007/s00521-019-04368-6.

Aktaş, M., & Kılıç, F. (2021). Binary grey wolf optimizer using archeology and astronomy news for text classification. International Conference on Innovative Engineering Applications (CIEA), 20-22 May, 2021, Muş, Turkey.

Yousef, J., Youssef, A., & Keshk, A. (2021). A Hybrid Swarm Intelligence Based Feature Selection Algorithm for High Dimensional Datasets. IJCI. International Journal of Computers and Information, 8(1), 67–86. doi:10.21608/ijci.2021.62499.1040.

Hu, P., Pan, J. S., & Chu, S. C. (2020). Improved Binary Grey Wolf Optimizer and Its application for feature selection. Knowledge-Based Systems, 195, 105746. doi:10.1016/j.knosys.2020.105746.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-04-023

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Joan Angelina Widians, Retantyo Wardoyo, Sri Hartati