Analysis of Four-Species Diffusive and Non-Diffusive Food Chains Using Artificial Neural Networking
Downloads
Doi: 10.28991/ESJ-2025-09-02-011
Full Text: PDF
Downloads
Stachowicz, J. J. (2001). Mutualism, facilitation, and the structure of ecological communities. BioScience, 51(3), 235–246. doi:10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2.
Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18(3), 119–125. doi:10.1016/S0169-5347(02)00045-9.
Tirado, R., & Pugnaire, F. I. (2005). Community structure and positive interactions in constraining environments. Oikos, 111(3), 437–444. doi:10.1111/j.1600-0706.2005.14094.x.
Addicott, J. F. (1984). Mutualistic interactions in population and community processes. A new ecology: Novel approaches to interactive systems. Wiley, New York, United States.
Boucher, D. H. (1985). The biology of mutualism: ecology and evolution. Oxford University Press, New York, United States.
Ranjith Kumar, G., Ramesh, K., Khan, A., Lakshminarayan, K., & Abdeljawad, T. (2024). Dynamical study of fractional order Leslie-Gower model of predator-prey with fear, Allee effect, and inter-species rivalry. Results in Control and Optimization, 14, 100403. doi:10.1016/j.rico.2024.100403.
Qurban, M., Khaliq, A., Saqib, M., & Abdeljawad, T. (2024). Stability, bifurcation, and control: Modeling interaction of the predator-prey system with Alles effect. Ain Shams Engineering Journal, 15(4), 102631. doi:10.1016/j.asej.2024.102631.
Thirthar, A. A., Majeed, S. J., Alqudah, M. A., Panja, P., & Abdeljawad, T. (2022). Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator. Chaos, Solitons and Fractals, 159, 112091. doi:10.1016/j.chaos.2022.112091.
Dean, A. M. (1983). A simple model of mutualism. American Naturalist, 121(3), 409–417. doi:10.1086/284069.
Freedman, H. I. (1980) Deterministic Mathematical Models in Population Ecology. Marcel Dekker, Inc. New York, United States.
Freedman, H. I., Addicott, J. F., & Rai, B. (1983). Nonobligate and Obligate Models of Mutualism. Biology Proceedings, Edmonton, 349–354. doi:10.1007/978-3-642-87893-0_44.
Rai, B., Freedman, H. I., & Addicott, J. F. (1983). Analysis of three species models of mutualism in predator-prey and competitive systems. Mathematical Biosciences, 65(1), 13–50. doi:10.1016/0025-5564(83)90069-X.
Addicott, J. F., & Freedman, H. I. (1984). On the structure and stability of mutualistic systems: Analysis of predator-prey and competition models as modified by the action of a slow-growing mutualist. Theoretical Population Biology, 26(3), 320–339. doi:10.1016/0040-5809(84)90037-6.
Perko, L. (2001). Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer, New York, United States. doi:10.1007/978-1-4613-0003-8.
Lawlor, L. R. (1979). Direct and indirect effects of n-species competition. Oecologia, 43(3), 355–364. doi:10.1007/bf00344961.
Bentley, B. L. (1977). Extrafloral Nectaries and Protection by Pugnacious Bodyguards. Annual Review of Ecology and Systematics, 8(1), 407–427. doi:10.1146/annurev.es.08.110177.002203.
May, R. M. (2001). Stability and Complexity in Model Ecosystems. Princeton university press, Princeton, United States. doi:10.1515/9780691206912.
Paine, R. T. (1988). Road Maps of Interactions or Grist for Theoretical Development? Ecology, 69(6), 1648–1654. doi:10.2307/1941141.
Takeuchi, Y. (1996). Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, Singapore. doi:10.1142/2942.
El-Owaidy, H. M., Ragab, A. A., & Ismail, M. (2001). Mathematical analysis of a food-web model. Applied Mathematics and Computation, 121(2–3), 155–167. doi:10.1016/s0096-3003(99)00269-6.
Tuerxun, N., Abdurahman, X., & Teng, Z. (2020). Global dynamics and optimal harvesting in a stochastic two-predators one-prey system with distributed delays and Lévy noise. Journal of Biological Dynamics, 14(1), 32–56. doi:10.1080/17513758.2019.1707888.
Arif, M. S., Mukheimer, A., & Ejaz, A. (2024). Cannibalism and Harvesting in Tritrophic Chains: Insights from Mathematical and Artificial Neural Network Analysis. Emerging Science Journal, 8(4), 1262-1279. doi:10.28991/ESJ-2024-08-04-02.
Aravindan, K. L., Siddika, A., Ramayah, T., Wani, F. S., Annamalah, S., Ilhavenil, N., & Sunita, L. H. (2024). Crafting the Organic Mindset through Attitude: A PLS-SEM Approach. Journal of Human, Earth, and Future, 5(4), 643-659. doi:10.28991/HEF-2024-05-04-08.
Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72(3), 896–903. doi:10.2307/1940591.
Abrams, P. A., & Roth, J. D. (1994). The effects of enrichment of three-species food chains with nonlinear functional responses. Ecology, 75(4), 1118–1130. doi:10.2307/1939435.
Hogeweg, P., & Hesper, B. (1978). Interactive instruction on population interactions. Computers in Biology and Medicine, 8(4), 319–327. doi:10.1016/0010-4825(78)90032-X.
McCann, K., & Yodzis, P. (1994). Biological conditions for chaos in a three-species food chain. Ecology, 75(2), 561–564. doi:10.2307/1939558.
Mccann, K., & Yodzis, P. (1995). Bifurcation Structure of a Three-Species Food-Chain Model. Theoretical Population Biology, 48(2), 93–125. doi:10.1006/tpbi.1995.1023.
Rai, V., & Sreenivasan, R. (1993). Period-doubling bifurcations leading to chaos in a model food chain. Ecological Modelling, 69(1–2), 63–77. doi:10.1016/0304-3800(93)90049-X.
Scheffer, M. (1991). Should we expect strange attractors behind plankton dynamics - and if so, should we bother? Journal of Plankton Research, 13(6), 1291–1305. doi:10.1093/plankt/13.6.1291.
Wilder, J. W., Voorhis, N., Colbert, J. J., & Sharov, A. (1994). A three variable differential equation model for gypsy moth population dynamics. Ecological Modelling, 72(3–4), 229–250. doi:10.1016/0304-3800(94)90085-X.
Gakkhar, S., & Naji, R. K. (2003). On a food web consisting of a specialist and a generalist predator. Journal of Biological Systems, 11(4), 365–376. doi:10.1142/S0218339003000956.
Gakkhar, S., & Naji, R. K. (2002). Chaos in three species ratio dependent food chain. Chaos, Solitons and Fractals, 14(5), 771–778. doi:10.1016/S0960-0779(02)00038-3.
Gakkhar, S., & Singh, B. (2005). Complex dynamic behavior in a food web consisting of two preys and a predator. Chaos, Solitons and Fractals, 24(3), 789–801. doi:10.1016/j.chaos.2004.09.095.
Pal, S., Tiwari, P. K., Misra, A. K., & Wang, H. (2024). Fear effect in a three-species food chain model with generalist predator. Mathematical Biosciences and Engineering, 21(1), 1–33. doi:10.3934/mbe.2024001.
Saikumar, S., Mani, R., Ganesan, M., Dhinakarasamy, I., Palanisami, T., & Gopal, D. (2024). Trophic transfer and their impact of microplastics on estuarine food chain model. Journal of Hazardous Materials, 464, 132927. doi:10.1016/j.jhazmat.2023.132927.
Gao, S., Li, Z., & Zhang, S. (2024). Trophic transfer and biomagnification of microplastics through food webs in coastal waters: A new perspective from a mass balance model. Marine Pollution Bulletin, 200, 116082. doi:10.1016/j.marpolbul.2024.116082.
Gomes, D. G. E., Ruzicka, J. J., Crozier, L. G., Huff, D. D., Brodeur, R. D., & Stewart, J. D. (2024). Marine heatwaves disrupt ecosystem structure and function via altered food webs and energy flux. Nature Communications, 15(1), 1988. doi:10.1038/s41467-024-46263-2.
Xu, H., Hu, Z., Sun, Y., Xu, J., Huang, L., Yao, W., Yu, Z., & Xie, Y. (2024). Microplastics supply contaminants in food chain: non-negligible threat to health safety. Environmental Geochemistry and Health, 46(8), 276. doi:10.1007/s10653-024-02076-2.
Jin, H.-Y., Wang, Z.-A., & Wu, L. (2022). Global dynamics of a three-species spatial food chain model. Journal of Differential Equations, 333, 144–183. doi:10.1016/j.jde.2022.06.007.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
