A Comparative Analysis of Machine Learning Models for Predicting EFL Student Language Performance in Smart Learning Environments
Downloads
Doi: 10.28991/ESJ-2025-09-02-07
Full Text: PDF
Downloads
Gunawardena, M., Bishop, P., & Aviruppola, K. (2024). Personalized learning: The simple, the complicated, the complex and the chaotic. Teaching and Teacher Education, 139, 104429. doi:10.1016/j.tate.2023.104429.
Herold, B. (2017). Personalized learning: Modest gains, big challenges, RAND study finds. Education Week, Bethesda, United States.
Kukulska-Hulme, A. (2020). Mobile and personal learning for newcomers to a city. Electronic Journal of Foreign Language Teaching, 17(1), 93–103. doi:10.56040/agkh1717.
Xu, Y. (2021). A Study on the Curriculum Design of Personalized English Teaching in the Context of Internet. Open Journal of Social Sciences, 9(4), 65–71. doi:10.4236/jss.2021.94007.
Bishop, P. A., Downes, J. M., & Farber, K. (2021). Personalized learning in the middle grades: A guide for classroom teachers and school leaders. Harvard Education Press, Cambridge, United States.
Bower, M. (2019). Technology-mediated learning theory. British Journal of Educational Technology, 50(3), 1035-1048. doi:10.1111/bjet.12771.
Wu, M., Subramaniam, G., Zhu, D., Li, C., Ding, H., & Zhang, Y. (2024). Using Machine Learning-based Algorithms to Predict Academic Performance - A Systematic Literature Review. 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM), 1–8. doi:10.1109/iciptm59628.2024.10563566.
Zhao, L., Ren, J., Zhang, L., & Zhao, H. (2023). Quantitative Analysis and Prediction of Academic Performance of Students Using Machine Learning. Sustainability (Switzerland), 15(16), 12531. doi:10.3390/su151612531.
Sateesh, N., Srinivasa Rao, P., & Rajya Lakshmi, D. (2023). Optimized ensemble learning-based student's performance prediction with weighted rough set theory enabled feature mining. Concurrency and Computation: Practice and Experience, 35(7), e7601. doi:10.1002/cpe.7601.
Çınar, D., & Yılmaz Gündüz, S. (2024). Classification of Students' Academic Success Using Ensemble Learning and Attribute Selection. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 25(2), 262–277. doi:10.18038/Estubtda.1394885.
Šževgin, H. (2023). A comparative study of ensemble methods in the field of education: Bagging and Boosting algorithms. International Journal of Assessment Tools in Education, 10(3), 544–562. doi:10.21449/ijate.1167705.
Abdul Bujang, S. D., Selamat, A., Krejcar, O., Mohamed, F., Cheng, L. K., Chiu, P. C., & Fujita, H. (2023). Imbalanced Classification Methods for Student Grade Prediction: A Systematic Literature Review. IEEE Access, 11, 1970–1989. doi:10.1109/ACCESS.2022.3225404.
Ye, M., Sheng, X., Lu, Y., Zhang, G., Chen, H., Jiang, B., Zou, S., & Dai, L. (2022). SA-FEM: Combined Feature Selection and Feature Fusion for Students' Performance Prediction. Sensors, 22(22), 8838. doi:10.3390/s22228838.
Li, S., & Yang, B. (2023). Personalized Education Resource Recommendation Method Based on Deep Learning in Intelligent Educational Robot Environments. International Journal of Information Technologies and Systems Approach, 16(3), 1–15. doi:10.4018/IJITSA.321133.
Mastrothanasis, K., Zervoudakis, K., & Kladaki, M. (2024). An application of Computational Intelligence in group formation for digital drama education. Iran Journal of Computer Science, 1–13. doi:10.1007/s42044-024-00186-9.
López-García, A., Blasco-Blasco, O., Liern-García, M., & Parada-Rico, S. E. (2023). Early detection of students' failure using Machine Learning techniques. Operations Research Perspectives, 11, 100292. doi:10.1016/j.orp.2023.100292.
Alshamaila, Y., Alsawalqah, H., Aljarah, I., Habib, M., Faris, H., Alshraideh, M., & Salih, B. A. (2024). An automatic prediction of students' performance to support the university education system: a deep learning approach. Multimedia Tools and Applications, 83(15), 46369–46396. doi:10.1007/s11042-024-18262-4.
Malik, S., & Jothimani, K. (2024). Enhancing Student Success Prediction with FeatureX: A Fusion Voting Classifier Algorithm with Hybrid Feature Selection. Education and Information Technologies, 29(7), 8741–8791. doi:10.1007/s10639-023-12139-z.
Sghir, N., Adadi, A., & Lahmer, M. (2023). Recent advances in Predictive Learning Analytics: A decade systematic review (2012–2022). Education and Information Technologies, 28(7), 8299–8333. doi:10.1007/s10639-022-11536-0.
Ersozlu, Z., Taheri, S., & Koch, I. (2024). A review of machine learning methods used for educational data. Education and Information Technologies, 1–21. doi:10.1007/s10639-024-12704-0.
Xu, X. (2023). Revolutionizing Education: Advanced Machine Learning Techniques for Precision Recommendation of Top-Quality Instructional Materials. International Journal of Computational Intelligence Systems, 16(1), 179. doi:10.1007/s44196-023-00361-z.
Sajja, R., Sermet, Y., Cwiertny, D., & Demir, I. (2023). Integrating AI and learning analytics for data-driven pedagogical decisions and personalized interventions in education. arXiv preprint, arXiv:2312.09548. doi:10.48550/arXiv.2312.09548.
Orji, F. A., & Vassileva, J. (2022). Machine learning approach for predicting students' academic performance and study strategies based on their motivation. arXiv preprint, arXiv:2210.08186. doi:10.48550/arXiv.2210.08186.
Ayanwale, M. A., Molefi, R. R., & Oyeniran, S. (2024). Analyzing the evolution of machine learning integration in educational research: a bibliometric perspective. Discover Education, 3(1), 47. doi:10.1007/s44217-024-00119-5.
Brdnik, S., Š umak, B., & Podgorelec, V. (2022). Aligning Learners' Expectations and Performance by Learning Analytics Systemwith a Predictive Model. arXiv preprint, arXiv.2211.07729. doi:10.48550/arXiv.2211.07729.
Moubayed, A., Injadat, M., Alhindawi, N., Samara, G., Abuasal, S., & Alazaidah, R. (2023). A Deep Learning Approach Towards Student Performance Prediction in Online Courses: Challenges Based on a Global Perspective. 2023 24th International Arab Conference on Information Technology (ACIT), 1–6. doi:10.1109/acit58888.2023.10453917.
de Souza Zanirato Maia, J., Bueno, A. P. A., & Sato, J. R. (2023). Applications of Artificial Intelligence Models in Educational Analytics and Decision Making: A Systematic Review. World, 4(2), 288–313. doi:10.3390/world4020019.
Akyuz, Y. (2020). Personalized learning in education. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 69(1), 175-194.
Bulger, M. (2016). Personalized learning: The conversations we're not having. Data and Society, 22(1), 1-29.
Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms. Smart Learning Environments, 7(1), 33. doi:10.1186/s40561-020-00140-9.
Fitzgerald, E., Jones, A., Kucirkova, N., & Scanlon, E. (2018). A literature synthesis of personalised technology-enhanced learning: What works and why. Research in Learning Technology, 26. doi:10.25304/rlt.v26.2095.
Lee, D., Huh, Y., Lin, C.-Y., & Reigeluth, C. M. (2018). Technology functions for personalized learning in learner-centered schools. Educational Technology Research and Development, 66(5), 1269–1302. doi:10.1007/s11423-018-9615-9.
Hsieh, C.-W., & Chen, S. Y. (2016). A Cognitive Style Perspective to Handheld Devices: Customization vs. Personalization. The International Review of Research in Open and Distributed Learning, 17(1), 2168. doi:10.19173/irrodl.v17i1.2168.
Pontual Falcí£o, T., Mendes de Andrade e Peres, F., Sales de Morais, D. C., & da Silva Oliveira, G. (2018). Participatory methodologies to promote student engagement in the development of educational digital games. Computers & Education, 116, 161–175. doi:10.1016/j.compedu.2017.09.006.
Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and Education: The Self-Determination Perspective. Educational Psychologist, 26(3–4), 325–346. doi:10.1080/00461520.1991.9653137.
Al-Mutairi, M. A. (2002). Be Water, My Friend”: The Adaptive Approach to English Language Learning. International Journal of Latest Research in Humanities and Social Science (IJLRHSS), 7(5), 20-29.
Sampson, D., & Karagiannidis, C. (2002). Personalised learning: educational, technological and standarisation perspective. Digital Education Review, (4), 24-39.
Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing Personalized Education: A Dynamic Framework. Educational Psychology Review, 33(3), 863–882. doi:10.1007/s10648-020-09570-w.
Fleming, N.D. (2001) Teaching and Learning Styles: VARK Strategies. Neil Fleming, Seattle, United States.
EHRMAN, M., & OXFORD, R. (1990). Adult Language Learning Styles and Strategies in an Intensive Training Setting. The Modern Language Journal, 74(3), 311–327. doi:10.1111/j.1540-4781.1990.tb01069.x.
Lamy, M.-N., & Hampel, R. (2007). Online Communication in Language Learning and Teaching. Palgrave Macmillan UK, London, United Kingdom. doi:10.1057/9780230592681.
Baker, R. S. (2010). Data mining for education: Adaptive learning systems. Handbook of Educational Data Mining, Boca Raton, United States.
Szabó, F., & Szoke, J. (2024). How does generative AI promote autonomy and inclusivity in language teaching? ELT Journal, 78(4), 478–488. doi:10.1093/elt/ccae052.
Cárdenas-Claros, M. S., Dassonvalle, K., Rodríguez-Arias, P., & Cáceres-Ramírez, B. (2024). Considerations for the Design of Pedagogical Tasks in Computer-Based L2 Listening. TESOL Quarterly. doi:10.1002/tesq.3371.
Wu, J. G. (2023). Mobile Assisted Language Learning Across Educational Contexts. Applied Linguistics, 44(6), 1175–1178. doi:10.1093/applin/amac071.
Whitney, N. (2013). Technology Enhanced Language Learning: Connecting Theory and Practice (Oxford Handbooks for Language Teachers). ELT Journal, 68(1), 105–108. doi:10.1093/elt/cct069.
Goksu, I., Ozkaya, E., & Gunduz, A. (2022). The content analysis and bibliometric mapping of CALL journal. Computer Assisted Language Learning, 35(8), 2018–2048. doi:10.1080/09588221.2020.1857409.
Wei, Y. (2022). Toward Technology-Based Education and English as a Foreign Language Motivation: A Review of Literature. Frontiers in Psychology, 13, 870540. doi:10.3389/fpsyg.2022.870540.
Zhang, R., & Zou, D. (2022). A state-of-the-art review of the modes and effectiveness of multimedia input for second and foreign language learning. Computer Assisted Language Learning, 35(9), 2790–2816. doi:10.1080/09588221.2021.1896555.
Shadiev, R., & Yang, M. (2020). Review of studies on technology-enhanced language learning and teaching. Sustainability (Switzerland), 12(2), 524. doi:10.3390/su12020524.
Liu, M. T., & Yu, P. T. (2011). Aberrant learning achievement detection based on person-fit statistics in personalized e-learning systems. Educational Technology & Society, 14(1), 107–120.
Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2015). Continued Progress: Promising Evidence on Personalized Learning. Rand Corporation, Santa Monica, United States. doi:10.7249/rr1365.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. doi.:10.1023/a:1010933404324
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. doi:10.1023/B:STCO.0000035301.49549.88.
Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139. doi:10.1006/jcss.1997.1504.
MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415–447. doi:10.1162/neco.1992.4.3.415.
Fix, E., & Hodges, J. L. (1951). Discriminatory analysis: Nonparametric discrimination: Consistency properties. PsycEXTRA Dataset. American Psychological Association (APA), Washington, D.C., United States. doi:10.1037/e471672008-001.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67(2), 301–320. doi:10.1111/j.1467-9868.2005.00503.x.
Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. doi:10.1016/S0893-6080(05)80023-1.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. doi:10.5194/gmd-7-1247-2014.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. doi:10.3354/cr030079.
Cameron, A. C., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. doi:10.1016/s0304-4076(96)01818-0.
Smirani, L. K., Yamani, H. A., Menzli, L. J., & Boulahia, J. A. (2022). Using Ensemble Learning Algorithms to Predict Student Failure and Enabling Customized Educational Paths. Scientific Programming, 2022(1), 3805235. doi:10.1155/2022/3805235.
Keser, S. B., & Aghalarova, S. (2022). HELA: A novel hybrid ensemble learning algorithm for predicting academic performance of students. Education and Information Technologies, 27(4), 4521–4552. doi:10.1007/s10639-021-10780-0.
Clark, R. C., & Mayer, R. E. (2012). e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118255971.
Field, J. (2010). Listening in the language classroom. ELT journal, 64(3), 331-333. doi:10.1093/elt/ccq026.
Reinders, H., & White, C. (2010). The theory and practice of technology in materials development and task design. English language teaching materials: Theory and practice, 58-80, Cambridge University Press, Cambridge, United Kingdom.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
