IoT System with ESP32 for Smart Drip Irrigation and Climate Monitoring in Greenhouses
Downloads
The depletion of water resources and the need for sustainable agricultural practices require innovative technological solutions. This study develops an IoT-based smart drip irrigation and climate monitoring system for greenhouses using the ESP32 microcontroller. The methodology implements DHT11 sensors for temperature and humidity, GUVA-S12SD for UV radiation, capacitive soil moisture sensors, and HC-SR04 for water level measurement. Real-time data is displayed on an LCD screen and transmitted to the Arduino Cloud, enabling remote monitoring and control. Field tests showed a 35% reduction in water consumption compared to traditional methods, improving crop environmental conditions and reducing operating costs. The system operates in automatic and manual modes, adapting to various climatic conditions and user needs. The main innovation lies in its optimized water use efficiency through smart drip irrigation, ensuring precise humidity control and minimizing waste. Furthermore, its scalability allows integration with renewable energy sources, increasing its autonomy and sustainability. This approach fosters climate-resilient agriculture, aligned with the Sustainable Development Goals (SDGs), by promoting water conservation and efficient resource use.
Downloads
[1] Saleem, A., Anwar, S., Nawaz, T., Fahad, S., Saud, S., Ur Rahman, T., Khan, M. N. R., & Nawaz, T. (2024). Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences, 1–17. doi:10.1007/s43994-024-00177-3.
[2] Batista, C., Knipper, M., Sedas, A. C., Farante, S. V., Wainstock, D., Borjas-Cavero, D. B., Araya, K. R., Arteaga España, J. C., & Yglesias-González, M. (2024). Climate change, migration, and health: perspectives from Latin America and the Caribbean. The Lancet Regional Health - Americas, 40, 100926. doi:10.1016/j.lana.2024.100926.
[3] Garreaud, R., Boisier, J. P., Álvarez-Garreton, C., Christie, D., Carrasco-Escaff, T., Vergara, I., ... & Godoy, L. (2025). Hyperdroughts in central Chile: Drivers, Impacts and Projections. EGUsphere, 2025, 1-31. doi:10.5194/EGUSPHERE-2025-517.
[4] Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., Amarasiri, D., Hou, D., Zhou, P., Biswal, B. K., Balasubramanian, R., Wang, H., Siddique, K. H. M., Rinklebe, J., Kirkham, M. B., & Bolan, N. (2024). Impacts of climate change on the fate of contaminants through extreme weather events. Science of the Total Environment, 909, 168388. doi:10.1016/j.scitotenv.2023.168388.
[5] Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., & Ratnayake, S. (2021). Climate change and future of agri-food production. Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 49–79. doi:10.1016/B978-0-323-91001-9.00009-8.
[6] Lozano-Povis, A. A. (2023). Agriculture and climate change: Main findings and proposals for decision-making in two natural regions of Peru. South Sustainability, 4(1), 1-4. doi:10.21142/ss-0401-2023-e068.
[7] Choudhary, V., Guha, P., Pau, G., & Mishra, S. (2025). An overview of smart agriculture using internet of things (IoT) and web services. Environmental and Sustainability Indicators, 26, 100607. doi:10.1016/j.indic.2025.100607.
[8] Mane, S. S., Narawade, V., & Ranshur, N. J. (2024). Revolutionizing Agriculture Soil Testing with Agriculture 4.0 and IoT Integration. Current Agriculture Research Journal, 12(3), 1333–1344. doi:10.12944/CARJ.12.3.26.
[9] Saha, G., Shahrin, F., Khan, F. H., Meshkat, M. M., & Azad, A. A. M. (2025). Smart IoT-driven precision agriculture: Land mapping, crop prediction, and irrigation system. PLoS ONE, 20(3 March), 319268. doi:10.1371/journal.pone.0319268.
[10] Hashemi, S. Z., Darzi-Naftchali, A., Karandish, F., Ritzema, H., & Solaimani, K. (2024). Enhancing agricultural sustainability with water and crop management strategies in modern irrigation and drainage networks. Agricultural Water Management, 305, 109110. doi:10.1016/j.agwat.2024.109110.
[11] Pérez-Baca, M. S., Sambrano-Luna, K. L., Sánchez-Ramírez, J. M., Cabana-Cáceres, M., & Castro-Vargas, C. (2024). Design and implementation of an automated irrigation control for home plantations. Indonesian Journal of Electrical Engineering and Computer Science, 35(3), 1437–1446. doi:10.11591/ijeecs.v35.i3.pp1437-1446.
[12] Shahar, S. H., Ismail, S. I., Dzulkefli, N. N. S. N., Abdullah, R., & Zain, M. F. M. (2023). Arduino based irrigation monitoring system using Node microcontroller unit and Blynk application. Indonesian Journal of Electrical Engineering and Computer Science, 31(3), 1334–1341. doi:10.11591/ijeecs.v31.i3.pp1334-1341.
[13] Rahim, A. A., Mohamad, R., Shuhaimi, N. I., & Buclatin, W. C. (2023). Real-time soil monitoring and irrigation system for taro yam cultivation. Indonesian Journal of Electrical Engineering and Computer Science, 32(2), 1042–1049. doi:10.11591/ijeecs.v32.i2.pp1042-1049.
[14] Nũnez-Tapia, L. (2020). A prototype of an automatic irrigation system for peruvian crop fields. International Journal of Advanced Computer Science and Applications, 11(8), 731–734. doi:10.14569/IJACSA.2020.0110888.
[15] Canlas, F. Q., Al Falahi, M., & Nair, S. (2022). IoT based Date Palm Water Management System Using Case-Based Reasoning and Linear Regression for Trend Analysis. International Journal of Advanced Computer Science and Applications, 13(2), 549–556. doi:10.14569/IJACSA.2022.0130264.
[16] Satra, S., Agrawal, A., Gogate, S., Daryapurkar, R., & Mehendale, N. (2023). Design and Implementation of Arduino-based Automatic Irrigation with Moisture Sensor. SSRN Electronic Journal, 1-5. doi:10.2139/ssrn.4513859.
[17] Abouelmehdi, K., Elhattab, K., & El Moutaouakkil, A. (2022). Smart Agriculture Monitoring System using Clean Energy. International Journal of Advanced Computer Science and Applications, 13(5), 370–377. doi:10.14569/IJACSA.2022.0130544.
[18] Padhiary, M., Hoque, A., Prasad, G., Kumar, K., & Sahu, B. (2025). Precision agriculture and AI-driven resource optimization for sustainable land and resource management. Smart Water Technology for Sustainable Management in Modern Cities, 197–231. doi:10.4018/979-8-3693-8074-1.ch009.
[19] Lyu, L., Matheson, S., Fleck, R., Torpy, F. R., & Irga, P. J. (2024). Modulating phytoremediation: How drip irrigation system affect performance of active green wall and microbial community changes. Journal of Environmental Management, 370, 122646. doi:10.1016/j.jenvman.2024.122646.
[20] Nsoh, B., Katimbo, A., Guo, H., Heeren, D. M., Nakabuye, H. N., Qiao, X., Ge, Y., Rudnick, D. R., Wanyama, J., & Bwambale, E. (2024). Internet of Things-Based Automated Solutions Utilizing Machine Learning for Smart and Real-Time Irrigation Management : A Review. Sensors (Switzerland), 24(7480), 1–37. doi:https://doi.org/10.3390/s24237480.
[21] Morchid, A., Et-taibi, B., Oughannou, Z., Alami, R. El, Qjidaa, H., Jamil, M. O., Boufounas, E. M., & Abid, M. R. (2025). IoT-enabled smart agriculture for improving water management: A smart irrigation control using embedded systems and Server-Sent Events. Scientific African, 27, 2527. doi:10.1016/j.sciaf.2024.e02527.
[22] Al-Qudah, R., Almuhajri, M., & Suen, C. Y. (2025). Unveiling the potential of sustainable agriculture: A comprehensive survey on the advancement of AI and sensory data for smart greenhouses. Computers and Electronics in Agriculture, 229, 109721. doi:10.1016/j.compag.2024.109721.
[23] Gaitan, N. C., Batinas, B. I., Ursu, C., & Crainiciuc, F. N. (2025). Integrating Artificial Intelligence into an Automated Irrigation System. Sensors, 25(4), 1199. doi:10.3390/s25041199.
[24] Mohsin Tahir, D., & Omran Al-Sulttani, A. (2024). Smart Irrigation Technique in the Fixed Irrigation System Based on Soil Moisture Content. IOP Conference Series: Earth and Environmental Science, 1374(1), 12061. doi:10.1088/1755-1315/1374/1/012061.
[25] Duguma, A. L., & Bai, X. (2025). How the internet of things technology improves agricultural efficiency. Artificial Intelligence Review, 58(2), 1–26. doi:10.1007/s10462-024-11046-0.
[26] Preite, L., & Vignali, G. (2024). Artificial intelligence to optimize water consumption in agriculture: A predictive algorithm-based irrigation management system. Computers and Electronics in Agriculture, 223, 109126. doi:10.1016/j.compag.2024.109126.
[27] Parra-López, C., Ben Abdallah, S., Garcia-Garcia, G., Hassoun, A., Trollman, H., Jagtap, S., Gupta, S., Aït-Kaddour, A., Makmuang, S., & Carmona-Torres, C. (2025). Digital technologies for water use and management in agriculture: Recent applications and future outlook. Agricultural Water Management, 309, 109347. doi:10.1016/j.agwat.2025.109347.
[28] Mohan, R. N. V. J., Rayanoothala, P. S., & Sree, R. P. (2024). Next-gen agriculture: integrating AI and XAI for precision crop yield predictions. Frontiers in Plant Science, 15, 1451607. doi:10.3389/fpls.2024.1451607.
[29] Balamurali, D., Chakankar, S., Sharma, G., Pagey, A. P., Natarajan, M., Shaik, S., Gnanavendan, S., & Arıcı, M. (2025). A solar-powered, internet of things (IoT)-controlled water irrigation system supported by rainfall forecasts utilizing aerosols: a review. Environment, Development and Sustainability, 1–40. doi:10.1007/s10668-024-05953-z.
[30] Mousavi, R., Mousavi, A., Mousavi, Y., Tavasoli, M., Arab, A., Kucukdemiral, I. B., Alfi, A., & Fekih, A. (2025). Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency. Applied Energy, 382, 125296. doi:10.1016/j.apenergy.2025.125296.
[31] Tychola, K. A., & Rantos, K. (2025). Cyberthreats and Security Measures in Drone-Assisted Agriculture. Electronics (Switzerland), 14(1), 149. doi:10.3390/electronics14010149.
[32] Zhukabayeva, T., Zholshiyeva, L., Karabayev, N., Khan, S., & Alnazzawi, N. (2025). Cybersecurity Solutions for Industrial Internet of Things–Edge Computing Integration: Challenges, Threats, and Future Directions. Sensors, 25(1), 213. doi:10.3390/s25010213.
[33] Chang, Y. H., Wu, F. C., & Lin, H. W. (2025). Design and Implementation of ESP32-Based Edge Computing for Object Detection. Sensors, 25(6), 1656. doi:10.3390/s25061656.
[34] Frumkin, H., Geller, R. J., Rubin, I. L., & Nodvin, J. (2009). Safe and Healthy School Environments. Safe and Healthy School Environments, 1–480. doi:10.1093/acprof:oso/9780195179477.001.0001.
[35] Chowdhury, M., Ahsan, T. M. A., & Ahamed, M. S. (2023). Assessment of health hazards of greenhouse workers considering UV exposure and thermal comfort. Smart Agricultural Technology, 5, 100319. doi:10.1016/j.atech.2023.100319.
[36] Abdelmoneim, A. A., Al Kalaany, C. M., Khadra, R., Derardja, B., & Dragonetti, G. (2025). Calibration of Low-Cost Capacitive Soil Moisture Sensors for Irrigation Management Applications. Sensors, 25(2), 343. doi:10.3390/s25020343.
[37] Sulistyawan, V. N., Salim, N. A., Abas, F. G., & Aulia, N. (2023). Parking Tracking System Using Ultrasonic Sensor HC-SR04 and NODEMCU ESP8266 Based IoT. IOP Conference Series: Earth and Environmental Science, 1203(1), 12028. doi:10.1088/1755-1315/1203/1/012028.
[38] Prakash, S. S., Usha, R., Karuppiah, N., Saravanan, S., Kalaiyarasi, M., & Karunanithi, K. (2025). Smart Home and Security Systems: An IoTBased Approach Utilizing ESP 32 and Multisensor Integration. E3S Web of Conferences, 616, 2004. doi:10.1051/e3sconf/202561602004.
[39] Ngoma, D. H., Nkongo, D., Abdul-Rahman, H. M., Muna, B. H., Buberwa, A. P., Ngaiza, E., & Rhee, H. (2025). Design and Development of IoT Smart Drip Irrigation and Fertigation Prototype for Small and Medium Scale Farmers. Acase Study of Tomato Farmers in Tanzania. Journal of The Institution of Engineers (India): Series A, 1–23. doi:10.1007/s40030-024-00857-7.
[40] Sallem, A., Souissi, Z., Nasri, M. A., Benhala, B., & Masmoudi, N. (2025). ESP32 charging system prototype for EV: Design and implementation using wireless energy transmission. E3S Web of Conferences, 601, 112. doi:10.1051/e3sconf/202560100112.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
