Enhanced Optimization Strategy to Maximize Achievable Rate of Millimeter-Wave Full-Duplex UAV on Multiple User
Downloads
This study proposes an enhanced optimization strategy to maximize the achievable data rate of millimeter-wave (mmWave) full-duplex (FD) unmanned aerial vehicles (UAVs) in multi-user scenarios. The objective is to address signal degradation from high-frequency path loss and self-interference while ensuring efficient resource allocation across multiple user equipment (UEs). A joint optimization framework is introduced, integrating UAV positioning, beamforming vector design at both the gateway and UAV, and power allocation. Initially, the Alternating Interference Suppression (AIS) algorithm is adapted for multiple UEs, but due to emerging non-convexity, the problem is reformulated using a first-order approximation approach. The solution is decomposed into two iterative sub-problems—optimizing UAV location and then solving for beamforming and power distribution. MATLAB-based simulations validate the proposed approach, revealing a threefold increase in achievable data rate and a 40.85% improvement in power efficiency compared to non-optimized systems. The novelty of this work lies in its scalable multi-user adaptation and its integrated, power-aware optimization algorithm, outperforming conventional FD and half-duplex strategies. This contribution significantly advances the design of efficient, high-throughput UAV communication systems for next-generation wireless networks, especially in environments with frequent line-of-sight obstructions.
Downloads
[1] Yu, X., Huang, X., Wang, K., Shu, F., & Dang, X. (2022). Joint Design of Power Allocation, Beamforming, and Positioning for Energy-Efficient UAV-Aided Multiuser Millimeter-Wave Systems. IEEE Journal on Selected Areas in Communications, 40(10), 2930–2945. doi:10.1109/JSAC.2022.3196111.
[2] Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., & Chen, G. (2018). Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(3), 1616–1653. doi:10.1109/COMST.2018.2844322.
[3] Heimann, K., Häger, S., & Wietfeld, C. (2022). 5.5 Potential of Millimeter Wave Communications. Applications, 375–390, De Gruyter Brill, Berlin, Germany. doi:10.1515/9783110785982-029.
[4] Kong, H., Huang, C., Yu, J., & Shen, X. (2025). A Survey of mmWave Radar-Based Sensing in Autonomous Vehicles, Smart Homes and Industry. IEEE Communications Surveys & Tutorials, 27(1), 463–508. doi:10.1109/comst.2024.3409556.
[5] Randles, H., Newcombe, A., Taberner, A., Budgett, D., & Nielsen, P. (2023). Optimising Multi-Wavelength Attenuation-Based Length Sensors. IEEE International Instrumentation and Measurement Technology Conference (I2MTC-2023), 1–6. doi:10.1109/i2mtc53148.2023.10175970.
[6] Ruiz, C. G., Pascual-Iserte, A., & Munoz, O. (2021). Analysis of Blocking in mmWave Cellular Systems: Application to Relay Positioning. IEEE Transactions on Communications, 69(2), 1329–1342. doi:10.1109/TCOMM.2020.3038177.
[7] An, H. T., Ren, J. F., Huo, J. C., He, Y., & Xu, L. (2022). Short-distance Attenuation of Electromagnetic Waves in Rainfall Environment. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1–3. doi:10.1109/imws-amp54652.2022.10107021.
[8] Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Macrodiversity in Cellular Networks with Random Blockages. IEEE Transactions on Wireless Communications, 17(2), 996–1010. doi:10.1109/TWC.2017.2773058.
[9] Sur, S., & Nelakuditi, S. (2022). A Case for Line-Of-Sight Blockage Detection as a Primitive in Millimeter-Wave Networks. Proceedings - 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems, MASS 2022, 564–569. doi:10.1109/MASS56207.2022.00084.
[10] Hersyandika, R., Sanchez, J., Miao, Y., Pollin, S., & Tufvesson, F. (2022). Measurement-based blockage and intra-cluster interference analysis in mmWave multi-point connectivity networks. EmergingWireless 2022 - Proceedings of the 1st International Workshop on Emerging Topics in Wireless, Part of CoNEXT 2022, 12–17. doi:10.1145/3565474.3569071.
[11] Zhang, Y., & Mishra, D. (2024). Energy-Efficient UAV-Relayed High-altitude Platform to Ground User Communication. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 1–6. doi:10.1109/PIMRC59610.2024.10817374.
[12] Tran, G. K. (2024). Temporary Communication Network Using Millimeter-Wave Drone Base Stations. 2024 IEEE VTS Asia Pacific Wireless Communications Symposium, APWCS 2024, 1–5. doi:10.1109/APWCS61586.2024.10679283.
[13] Zhang, C., Zhang, L., Zhu, L., Zhang, T., Xiao, Z., & Xia, X. G. (2021). 3D Deployment of Multiple UAV-Mounted Base Stations for UAV Communications. IEEE Transactions on Communications, 69(4), 2473-2488. doi:10.1109/TCOMM.2021.3049387.
[14] Chen, K., Wang, Y., Zhao, J., Wang, X., & Fei, Z. (2021). URLLC-Oriented Joint Power Control and Resource Allocation in UAV-Assisted Networks. IEEE Internet of Things Journal, 8(12), 10103–10116. doi:10.1109/JIOT.2021.3051322.
[15] Yu, B., Qian, C., Lin, P., Shao, S., Pan, W., Shen, Y., Hu, S., Su, D., Sun, C., Xiong, Q., & Lee, J. (2022). Full Duplex Communication with Practical Self-Interference Cancellation Implementation. ICC 2022 - IEEE International Conference on Communications, 1100–1105. doi:10.1109/icc45855.2022.9838784.
[16] Sultan, R., Seddik, K., Han, Z., & Aazhang, B. (2021). Joint Transmitter-Receiver Optimization and Self-Interference Suppression in Full-Duplex MIMO Systems. IEEE Transactions on Vehicular Technology, 70(7), 6913–6929. doi:10.1109/TVT.2021.3087181.
[17] Ali, S., Ghazanfari, A., Rajatheva, N., & Latva-Aho, M. (2014). Effect of Residual of Self-Interference in Performance of Full-Duplex D2D Communication. Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity, 46-51. doi:10.4108/icst.5gu.2014.258100.
[18] Zhang, Y., Xiao, M., Han, S., Skoglund, M., & Meng, W. (2019). On Precoding and Energy Efficiency of Full-Duplex Millimeter-Wave Relays. IEEE Transactions on Wireless Communications, 18(3), 1943–1956. doi:10.1109/twc.2019.2900038.
[19] Zhang, J., Garg, N., Holm, M., & Ratnarajah, T. (2021). Design of Full Duplex Millimeter-Wave Integrated Access and Backhaul Networks. IEEE Wireless Communications, 28(1), 60–67. doi:10.1109/MWC.001.2000199.
[20] Yang, Z., Pan, C., Shikh-Bahaei, M., Xu, W., Chen, M., Elkashlan, M., & Nallanathan, A. (2018). Joint Altitude, Beamwidth, Location, and Bandwidth Optimization for UAV-Enabled Communications. IEEE Communications Letters, 22(8), 1716–1719. doi:10.1109/LCOMM.2018.2846241.
[21] Andreou, A., Mavromoustakis, C. X., Batalla, J. M., Markakis, E., Bourdena, A., Mastorakis, G., & Song, H. (2024). Enhancing UAV Network Efficiency through 6G+ Enabled Federated Learning Algorithms and Energy optimization Techniques. 2024 International Wireless Communications and Mobile Computing (IWCMC), 192–197. doi:10.1109/iwcmc61514.2024.10592391.
[22] Yang, Z., Pan, C., Wang, K., & Shikh-Bahaei, M. (2019). Energy Efficient Resource Allocation in UAV-Enabled Mobile Edge Computing Networks. IEEE Transactions on Wireless Communications, 18(9), 4576–4589. doi:10.1109/TWC.2019.2927313.
[23] Shuai, J., He, Y., Cao, X., & Xie, L. (2024). Energy Consumption Minimization for UAV-Mounted Active RIS-Assisted Mobile Edge Computing. 2024 IEEE International Workshop on Radio Frequency and Antenna Technologies (IWRF & AT), 516–521. doi:10.1109/iwrfat61200.2024.10594363.
[24] Wang, Z., Wang, G., & Huang, S. (2024). Energy-efficient mobile edge computing assisted by layered UAVs based on convex optimization. Physical Communication, 65, 62062007. doi:10.1016/j.phycom.2024.102382.
[25] Niu, H., Zhao, X., & Li, J. (2021). 3D Location and Resource Allocation Optimization for UAV-Enabled Emergency Networks under Statistical QoS Constraint. IEEE Access, 9, 41566–41576. doi:10.1109/ACCESS.2021.3065055.
[26] Xu, L., Chen, M., Chen, M., Yang, Z., Chaccour, C., Saad, W., & Hong, C. S. (2021). Joint Location, Bandwidth and Power Optimization for THz-Enabled UAV Communications. IEEE Communications Letters, 25(6), 1984–1988. doi:10.1109/LCOMM.2021.3064067.
[27] Wang, F., Zhang, Z., Zhou, L., Shang, T., & Zhang, R. (2024). Robust Multi-UAV Cooperative Trajectory Planning and Power Control for Reliable Communication in the Presence of Uncertain Jammers. Drones, 8(10), 558. doi:10.3390/drones8100558.
[28] Solati, A., Moghaddam, J. Z., & Ardebilipour, M. (2024). Enhancing Disaster Communication: Multi-UAV Optimization for Efficient Coverage. 2024 32nd International Conference on Electrical Engineering (ICEE), 1–5. doi:10.1109/icee63041.2024.10668219.
[29] Abbasi, O., & Yanikomeroglu, H. (2024). UxNB-Enabled Cell-Free Massive MIMO With HAPS-Assisted Sub-THz Backhauling. IEEE Transactions on Vehicular Technology, 73(5), 6937–6953. doi:10.1109/TVT.2023.3347140.
[30] Hassan, H., Althunibat, S., Dabiri, M. T., Hasna, M., & Qaraqe, K. (2024). On the Error Analysis of Two-Way Relaying in mmWave-Based Aerial Links. IEEE Wireless Communications and Networking Conference, WCNC, 1–6. doi:10.1109/WCNC57260.2024.10570604.
[31] Harinitha, D., Zakia, I., Iskandar, & Kurniawan, A. (2022). Effect of Different Locations of Millimeter Wave HAPS on the Downlink Sum Rate. 2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 1–5. doi:10.1109/tssa56819.2022.10063916.
[32] Liu, W., Zhang, X., Xing, H., Ren, J., Shen, Y., & Cui, S. (2025). UAV-Enabled Wireless Networks With Movable-Antenna Array: Flexible Beamforming and Trajectory Design. IEEE Wireless Communications Letters, 14(3), 566–570. doi:10.1109/LWC.2024.3451246.
[33] Hashir, S. M., Gupta, S., Megson, G., Aryafar, E., & Camp, J. (2022). Rate Maximization in a UAV Based Full-Duplex Multi-User Communication Network Using Multi-Objective Optimization. Electronics, 11(3), 401. doi:10.3390/electronics11030401.
[34] Zhu, L., Zhang, J., Xiao, Z., Cao, X., Xia, X. G., & Schober, R. (2020). Millimeter-Wave Full-Duplex UAV Relay: Joint Positioning, Beamforming, and Power Control. IEEE Journal on Selected Areas in Communications, 38(9), 2057–2073. doi:10.1109/JSAC.2020.3000879.
[35] Li, Y., Pan, W., Jiwu, G., Shi, C., Hu, N., & Shao, S. (2024). Millimeter-Wave Full-Duplex Phased Array RF Self-Interference Cancellation Technology. 2024 IEEE International Conference on Communications Workshops, ICC Workshops 2024, 1091–1096. doi:10.1109/ICCWorkshops59551.2024.10615922.
[36] Nguyen, B. C., Hoang, T. M., Dung, L. T., Kim, T., & Vinh, N. Van. (2022). On performance of full-duplex UAV system with multiple NOMA users and millimeter-wave communications. Physical Communication, 55. doi:10.1016/j.phycom.2022.101895.
[37] Ding, Q., Luo, Y., Yang, R., Hu, J., & Luo, C. (2022). Joint deployment, beamforming and power allocation of MmWave full-duplex UAV-BS. Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, 127–132. doi:10.1145/3555661.3560876.
[38] Mahmood, M., Yuan, Y., & Le-Ngoc, T. (2024). Multiple UAV-Assisted Cooperative DF Relaying in Multi-User Massive MIMO IoT Systems. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), 529–534. doi:10.1109/iccworkshops59551.2024.10615968.
[39] Li, B., Zhao, S., Zhang, R., & Yang, L. (2021). Full-Duplex UAV Relaying for Multiple User Pairs. IEEE Internet of Things Journal, 8(6), 4657–4667. doi:10.1109/JIOT.2020.3027621.
[40] Zakia, I. (2019). Maximizing the Sum Rate of Massive MIMO with Rectangular Planar Array and MRT Beamforming. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 1–5. doi:10.1109/vtcspring.2019.8746334.
[41] Palomar, D. P., & Chiang, M. (2006). A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications, 24(8), 1439–1451. doi:10.1109/JSAC.2006.879350.
[42] Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42. doi:10.1109/MCOM.2016.7470933.
[43] Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Communications Letters, 20(8), 1647–1650. doi:10.1109/LCOMM.2016.2578312.
[44] Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121. doi:10.1109/TWC.2017.2789293.
[45] Pan, C., Ren, H., Wang, K., Xu, W., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces. IEEE Transactions on Wireless Communications, 19(8), 5218–5233. doi:10.1109/TWC.2020.2990766.
[46] Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652. doi:10.1109/JSAC.2014.2330193.
[47] Duarte, M., & Sabharwal, A. (2010). Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results. Conference Record - Asilomar Conference on Signals, Systems and Computers (IEEE), 1558–1562. doi:10.1109/ACSSC.2010.5757799.
[48] Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572. doi:10.1109/LWC.2014.2342736.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















