IMpc-PyrYOLO: Hybrid YOLO Based Feature Pyramidal Network for Pest Detection in Rice Leaves
Downloads
Pests pose a significant threat to global food security, making early detection crucial for maintaining crop health. Traditional pest detection models suffered from inefficiencies such as long processing time and low accuracy, which hinder effective disease management. In order to overcome these existing issues, a novel improved efficient channel attention mechanism assisted feature pyramidal network-based YOLO model (IMpc-PyrYOLO) for rice leaf pest detection. The model integrates an efficient channel attention (ECA) mechanism with the feature pyramidal network (FPN) in the YOLO network to improve multi-scale feature extraction and pest classification accuracy. Additionally, an upgraded weighted Gaussian wiener filter (Up-weGaf) is employed for noise reduction, improving image clarity. The model is evaluated on two benchmark datasets such as IP_RicePests and IP102. Experimental results demonstrate that IP_RicePests attains a precision of 95.8%, recall of 96% and F1-score of 95.9%, whereas IP102 attains a higher precision of 97.8%, recall of 96%, mean Average Precision (mAP) of 95.9% and Intersection over Union (IoU) of 97% with processing time of 2.5 seconds. The proposed model significantly outperforms existing methods in accuracy and computational efficiency, which provides a robust and scalable solution for real-time pest detection in agriculture.
Downloads
[1] Ali, M. M., Bachik, N. A., Muhadi, N. ‘Atirah, Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. Physiological and Molecular Plant Pathology, 108, 101426. doi:10.1016/j.pmpp.2019.101426.
[2] Bari, B. S., Islam, M. N., Rashid, M., Hasan, M. J., Razman, M. A. M., Musa, R. M., Nasir, A. F. A., & Majeed, A. P. P. A. (2021). A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Computer Science, 7, 432. doi:10.7717/PEERJ-CS.432.
[3] Lin, F., Guo, S., Tan, C., Zhou, X., & Zhang, D. (2020). Identification of rice sheath blight through spectral responses using hyperspectral images. Sensors (Switzerland), 20(21), 1–16. doi:10.3390/s20216243.
[4] Li, D., Wang, R., Xie, C., Liu, L., Zhang, J., Li, R., Wang, F., Zhou, M., & Liu, W. (2020). A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors (Switzerland), 20(3), 578. doi:10.3390/s20030578.
[5] Khaki, S., Pham, H., Han, Y., Kuhl, A., Kent, W., & Wang, L. (2021). DeepCorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation. Knowledge-Based Systems, 218, 106874. doi:10.1016/j.knosys.2021.106874.
[6] Hu, Y., Deng, X., Lan, Y., Chen, X., Long, Y., & Liu, C. (2023). Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion. Insects, 14(3), 280. doi:10.3390/insects14030280.
[7] Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors (Switzerland), 17(9). doi:10.3390/s17092022.
[8] Wang, G., Sun, Y., & Wang, J. (2017). Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Computational Intelligence and Neuroscience, 2017(1), 2917536. doi:10.1155/2017/2917536.
[9] Dong, Q., Sun, L., Han, T., Cai, M., & Gao, C. (2024). PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection. Agriculture (Switzerland), 14(2), 228. doi:10.3390/agriculture14020228.
[10] Li, W., Zhu, T., Li, X., Dong, J., & Liu, J. (2022). Recommending Advanced Deep Learning Models for Efficient Insect Pest Detection. Agriculture (Switzerland), 12(7), 1065. doi:10.3390/agriculture12071065.
[11] Bhagawati, R., Bhagawati, K., Singh, A. K. K., Nongthombam, R., Sarmah, R., & Bhagawati, G. (2015). Artificial neural network assisted weather-based plant disease forecasting system. International Journal on Recent and Innovation Trends in Computing and Communication, 3(6), 4168–4173.
[12] Jia, X., Jiang, X., Li, Z., Mu, J., Wang, Y., & Niu, Y. (2023). Application of Deep Learning in Image Recognition of Citrus Pests. Agriculture (Switzerland), 13(5), 1023. doi:10.3390/agriculture13051023.
[13] Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. doi:10.1016/j.compag.2018.01.009.
[14] Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
[15] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. doi:10.1109/CVPR.2016.91.
[16] Yang, S., Xing, Z., Wang, H., Dong, X., Gao, X., Liu, Z., Zhang, X., Li, S., & Zhao, Y. (2023). Maize-YOLO: A New High-Precision and Real-Time Method for Maize Pest Detection. Insects, 14(3), 278. doi:10.3390/insects14030278.
[17] Zhang, M., Yang, W., Chen, D., Fu, C., & Wei, F. (2024). AM-MSFF: A Pest Recognition Network Based on Attention Mechanism and Multi-Scale Feature Fusion. Entropy, 26(5), 431. doi:10.3390/e26050431.
[18] Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. International Interdisciplinary PhD Workshop, IIPhDW 2018, 117–122. doi:10.1109/IIPHDW.2018.8388338.
[19] Taylor, L., & Nitschke, G. (2018). Improving Deep Learning with Generic Data Augmentation. Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 1542–1547. doi:10.1109/SSCI.2018.8628742.
[20] Nazki, H., Lee, J., Yoon, S., & Park, D. S. (2018). Synthetic data augmentation for plant disease image generation using GAN. In Proceedings of the Korea Contents Association Conference, 459-460.
[21] Ullah, N., Khan, J. A., Alharbi, L. A., Raza, A., Khan, W., & Ahmad, I. (2022). An Efficient Approach for Crops Pests Recognition and Classification Based on Novel DeepPestNet Deep Learning Model. IEEE Access, 10, 73019–73032. doi:10.1109/ACCESS.2022.3189676.
[22] Li, S., Wang, H., Zhang, C., & Liu, J. (2022). A Self-Attention Feature Fusion Model for Rice Pest Detection. IEEE Access, 10, 84063–84077. doi:10.1109/ACCESS.2022.3194925.
[23] Mendigoria, C. H., Concepcion, R., Bandala, A., Alajas, O. J., Aquino, H., & Dadios, E. (2021). OryzaNet: Leaf Quality Assessment of Oryza sativa Using Hybrid Machine Learning and Deep Neural Network. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2021, 1–6. doi:10.1109/HNICEM54116.2021.9731957.
[24] Ali, F., Qayyum, H., & Iqbal, M. J. (2023). Faster-PestNet: A Lightweight Deep Learning Framework for Crop Pest Detection and Classification. IEEE Access, 11, 3317506. IEEE Access. doi:10.1109/ACCESS.2023.3317506.
[25] Kukreja, V., Sharma, R., Vats, S., & Manwal, M. (2023). DeepLeaf: Revolutionizing Rice Disease Detection and Classification using Convolutional Neural Networks and Random Forest Hybrid Model. 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023, 1–6. doi:10.1109/ICCCNT56998.2023.10306530.
[26] Bharanidharan, N., Sannasi Chakravarthy, S. R., Rajaguru, H., Vinoth Kumar, V., Mahesh, T. R., & Guluwadi, S. (2023). Multiclass Paddy Disease Detection Using Filter-Based Feature Transformation Technique. IEEE Access, 11, 3322587. doi:10.1109/ACCESS.2023.3322587.
[27] Ananyasreya, P. P., & Subhija, E. N. (2022). Paddy Pest Classification Using Deep Learning Based Features. Proceedings - 2nd International Conference on Next Generation Intelligent Systems, ICNGIS 2022, 1–5. doi:10.1109/ICNGIS54955.2022.10079825.
[28] Tenriola, A., Azis, P. A., Kaswar, A. B., Adiba, F., & Andayani, D. D. (2025). Identifying Rice Plant Damage Due to Pest Attacks Using Convolutional Neural Networks. Jurnal RESTI, 9(1), 10–19. doi:10.29207/resti.v9i1.6125.
[29] Chaurasia, H., Arora, A., Raju, D., Marwaha, S., Chinnusamy, V., Jain, R., & Haque, M. A. (2024). PanicleDet: a deep learning-based model for detection of panicle stages in paddy. Neural Computing and Applications, 37(4), 2663–2673. doi:10.1007/s00521-024-10746-6.
[30] Tan, S., Xie, Q., Zhu, W., Deng, Y., Zhu, L., Yu, X., Yuan, Z., & Chen, Y. (2025). Deep learning and hyperspectral features for seedling stage identification of barnyard grass in paddy field. Frontiers in Plant Science, 16, 1507442. doi:10.3389/fpls.2025.1507442.
[31] Hussain, A., & Balaji Srikaanth, P. (2024). Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model. KSII Transactions on Internet and Information Systems, 18(4), 959–979. doi:10.3837/tiis.2024.04.008.
[32] Song, H., Yan, Y., Deng, S., Jian, C., & Xiong, J. (2024). Innovative lightweight deep learning architecture for enhanced rice pest identification. Physica Scripta, 99(9), 96007. doi:10.1088/1402-4896/ad69d5.
[33] Suryanarayana, G., Chandran, K., Khalaf, O. I., Alotaibi, Y., Alsufyani, A., & Alghamdi, S. A. (2021). Accurate Magnetic Resonance Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain. IEEE Access, 9, 71406–71417. doi:10.1109/ACCESS.2021.3077611.
[34] Wu, F., Yang, W., Xiao, L., & Zhu, J. (2020). Adaptive wiener filter and natural noise to eliminate adversarial perturbation. Electronics (Switzerland), 9(10), 1–14. doi:10.3390/electronics9101634.
[35] Cheng, L., Li, J., Duan, P., & Wang, M. (2021). A small attentional YOLO model for landslide detection from satellite remote sensing images. Landslides, 18(8), 2751–2765. doi:10.1007/s10346-021-01694-6.
[36] Zhou, T., Canu, S., & Ruan, S. (2021). Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism. International Journal of Imaging Systems and Technology, 31(1), 16–27. doi:10.1002/ima.22527.
[37] Li, Z., Jiang, X., Jia, X., Duan, X., Wang, Y., & Mu, J. (2022). Classification Method of Significant Rice Pests Based on Deep Learning. Agronomy, 12(9), 2096. doi:10.3390/agronomy12092096.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
