Small Dual Polarized UWB Antenna and Its Array Analysis for 5G/6G Applications
Downloads
In this work, a novel low-profile tunable ultra-wideband (UWB) K/Ka-band (14–40 GHz) dual circularly polarized magneto-electric antenna element has been designed, analyzed, and validated through circuit modeling, simulations, fabrication, and experimental testing for application in 5G/6G phased-array antennas. The antenna has compact dimensions of 0.5λ₀× 0.5λ₀ × 0.06λ₀/0.09λ₀, which can be further reduced to 0.25λ₀× 0.25λ₀ × 0.05λ₀ when metal–insulator–metal (MIM) and/or gap capacitors are employed. The proposed antenna exhibits a high gain of 9 dB, a wide scanning angle of ±75°, and an efficiency exceeding 85% across the entire operating frequency band. In addition, it demonstrates high isolation between ports and between co-polarized and cross-polarized radiation patterns, reaching 25 dB. The resonant frequency of the antenna is tunable, with a variation of up to 97% over the K/Ka-band frequency range. This tuning capability is achieved using MIM capacitors connected to the vias of the circular patch and/or gap capacitors, which collectively function as split-ring resonators (SRRs). Fabrication and experimental testing of the antenna confirm good agreement with the simulated results. The antenna is easily fabricated using glass substrates and standard epoxy/glass processes with only two layers, making it highly suitable for antenna-in-package applications based on glass technology. Since the antenna element is specifically designed for phased-array applications, array configurations were also investigated. Analysis of 512-element arrays shows that the Sunflower layout provides enhanced gain and overall performance while utilizing more than 50% fewer antenna elements compared to a conventional rectangular array.
Downloads
[1] Kumar, S. S., Balaji, S., Devi, S. N., & Priyadharsini, V. (2024). Exploring 6G Research: Advancements, Applications, and Challenges. Development of 6G Networks and Technology, 363–377. doi:10.1002/9781394230686.ch16.
[2] Ishteyaq, I., Muzaffar, K., Shafi, N., & Alathbah, M. A. (2024). Unleashing the Power of Tomorrow: Exploration of Next Frontier With 6G Networks and Cutting Edge Technologies. IEEE Access, 12, 29445–29463. doi:10.1109/ACCESS.2024.3367976.
[3] Jiang, W., Han, B., Habibi, M. A., & Schotten, H. D. (2021). The road towards 6G: A comprehensive survey. IEEE Open Journal of the Communications Society, 2, 334–366. doi:10.1109/OJCOMS.2021.3057679.
[4] Wang, X., Mei, J., Cui, S., Wang, C. X., & Shen, X. S. (2023). Realizing 6G: The Operational Goals, Enabling Technologies of Future Networks, and Value-Oriented Intelligent Multi-Dimensional Multiple Access. IEEE Network, 37(1), 10–17. doi:10.1109/MNET.001.2200429.
[5] Quy, V. K., Chehri, A., Quy, N. M., Han, N. D., & Ban, N. T. (2023). Innovative Trends in the 6G Era: A Comprehensive Survey of Architecture, Applications, Technologies, and Challenges. IEEE Access, 11, 39824–39844. doi:10.1109/ACCESS.2023.3269297.
[6] Tyagi, A. K., Tiwari, S., Gupta, S., & Mishra, A. K. (2025). 6G ‐Enabled Emerging Technologies for Next‐Generation Society: Challenges and Opportunities. 6G‐Enabled Technologies for Next Generation, 343–406. doi:10.1002/9781394258369.ch16.
[7] Zhang, H., Yao, X., Xu, K., Wu, Z., Li, W., Lu, Y., & Yang, J. (2025). Trustworthiness Evaluation Toward 6G Support of Space-Air-Ground Integrated Network. IEEE Wireless Communications, 32(2), 34–40. doi:10.1109/MWC.001.2400273.
[8] Hazra, A., Munusamy, A., Adhikari, M., Awasthi, L. K., & Venu, P. (2024). 6G-Enabled Ultra-Reliable Low Latency Communication for Industry 5.0: Challenges and Future Directions. IEEE Communications Standards Magazine, 8(2), 36–42. doi:10.1109/MCOMSTD.0004.2300029.
[9] Mohjazi, L., Selim, B., Tatipamula, M., & Imran, M. A. (2024). The Journey toward 6G: A Digital and Societal Revolution in the Making. IEEE Internet of Things Magazine, 7(2), 119–128. doi:10.1109/IOTM.001.2300119.
[10] Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z., Chen, Z., Chen, J., Yu, Z., Zhai, J., Zhang, N., Tian, L., Wu, F., Yang, G., Hao, Z. C., & Zhou, J. Y. (2021). The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications. IEEE Journal of Microwaves, 1(1), 101–122. doi:10.1109/JMW.2020.3035541.
[11] Maral, G., Bousquet, M., & Sun, Z. (2020). Satellite Communications Systems: Systems, Techniques and Technology, Sixth Edition. Satellite Communications Systems: Systems, Techniques and Technology, John Wiley & Sons, New Jersey, United States. doi:10.1002/9781119673811.
[12] Dastkhosh, A. R., Khan, Z., Naseh, M., & Lin, F. (2022). Link Budget Calculations for K/Ka-band Satellite Mobile Communication Systems. 2022 IEEE MTT-S International Wireless Symposium, IWS 2022 - Proceedings, 1–3. doi:10.1109/IWS55252.2022.9978012.
[13] Ippolito, L. J. (2008). Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance. Wiley, West Sussex, United Kingdom. doi:10.1002/9780470754443.
[14] Dastkhosh, A. R., Naseh, M., Dardari, D., & Lin, F. (2022). TV-Based Phased Array System Design in BTSs for 5G/IoT Applications. Progress in Electromagnetics Research C, 127, 1–16. doi:10.2528/PIERC22091909.
[15] Low, K. K. W., Zihir, S., Kanar, T., & Rebeiz, G. M. (2022). A 27-31-GHz 1024-Element Ka-Band SATCOM Phased-Array Transmitter with 49.5-dBW Peak EIRP, 1-dB AR, and ±70° Beam Scanning. IEEE Transactions on Microwave Theory and Techniques, 70(3), 1757–1768. doi:10.1109/TMTT.2021.3139911.
[16] Ur Rehman, M., Ravichandran, S., Watanabe, A. O., Erdogan, S., & Swaminathan, M. (2021). Characterization of ABF/Glass/ABF Substrates for mmWave Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(3), 384–394. doi:10.1109/TCPMT.2021.3061485.
[17] Yu, T., & Yu, D. (2023). Electrical performance characterization of glass substrate for millimeter-wave applications. Journal of Materials Science: Materials in Electronics, 34(2), 126. doi:10.1007/s10854-022-09583-x.
[18] Wang, Y., & Qu, S. W. (2023). Dual-Polarized Conformal Transparent Antenna Array with Hemispherical Beam Coverage. IEEE Antennas and Wireless Propagation Letters, 22(10), 2452–2456. doi:10.1109/LAWP.2023.3291013.
[19] Dastkhosh, A. R., & Lin, F. (2023). Differential Dual Polarized Magneto-Electric Dipoles for SATCOM Applications. 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation, APCAP 2023 - Proceedings, 1–2. doi:10.1109/APCAP59480.2023.10470287.
[20] ASE. (2025). Antenna in Package (AiP). ASE Technology Holding Co., Ltd., Kaohsiung, Taiwan. Available online: https://ase.aseglobal.com/en/technology/antenna_in_package (accessed on November 2025).
[21] Insight SiP. (2025). Index of /fichiers_insightsip. Insight SiP, Sophia Antipolis, France. Available online: https://www.insightsip.com/fichiers_insightsip (accessed on November 2025).
[22] Liu, D., Gu, X., Baks, C. W., & Valdes-Garcia, A. (2017). Antenna-in-Package Design Considerations for Ka-Band 5G Communication Applications. IEEE Transactions on Antennas and Propagation, 65(12), 6372-6379. doi:10.1109/TAP.2017.2722873.
[23] Liu, D., & Zhang, Y. (2020). Antenna-in-package Technology and Applications. John Wiley & Sons, New Jersey, United States.
[24] Chaloun, T., Brandl, S., Ambrosius, N., Krohnert, K., Maune, H., & Waldschmidt, C. (2023). RF Glass Technology Is Going Mainstream: Review and Future Applications. IEEE Journal of Microwaves, 3(2), 783–799. doi:10.1109/JMW.2023.3256413.
[25] Balanis, C. A. (2016). Antenna Theory: Analysis and Design. John Wiley & Sons, New Jersey, United States.
[26] Ding, C. F., Zhang, X. Y., Zhang, Y., Pan, Y. M., & Xue, Q. (2018). Compact broadband dual-polarized filtering dipole antenna with high selectivity for base-station applications. IEEE Transactions on Antennas and Propagation, 66(11), 5747–5756. doi:10.1109/TAP.2018.2862465.
[27] Xu, Y., Zhou, M., Wang, A., & Hou, J. (2023). Design of a compact magneto-electric dipole antenna. Microwave and Optical Technology Letters, 65(8), 2331–2336. doi:10.1002/mop.33683.
[28] Ge, L., & Luk, K. M. (2012). A Low-Profile Magneto-Electric Dipole Antenna. IEEE Transactions on Antennas and Propagation, 60(4), 1684–1689. doi:10.1109/TAP.2012.2186260.
[29] Li, M., & Luk, K. M. (2015). Wideband magnetoelectric dipole antennas with dual polarization and circular polarization. IEEE Antennas and Propagation Magazine, 57(1), 110–119. doi:10.1109/MAP.2015.2397091.
[30] Wang, H., Bae Park, Y., & Park, I. (2025). Low-Profile Magneto-Electric Dipole Antenna with Capacitively Loaded Loop and Stub-Added Notch. IEEE Transactions on Antennas and Propagation, 73(8), 6163–6168. doi:10.1109/TAP.2025.3564485.
[31] He, W., Li, J., Wu, S., Yan, S., & Xu, K. Da. (2025). 3D printed millimeter-wave magnetoelectric dipole antenna array fed by filtering butler matrix. AEU - International Journal of Electronics and Communications, 191, 155664. doi:10.1016/j.aeue.2025.155664.
[32] Kang, K., Shi, Y., & Liang, C. H. (2017). Substrate Integrated Magneto-Electric Dipole for UWB Application. IEEE Antennas and Wireless Propagation Letters, 16, 948–951. doi:10.1109/LAWP.2016.2615046.
[33] Hamada, H., Ali, M. M. M., Shams, S. I., Khalaf, A. A. M., & Allam, A. M. M. A. (2025). Design and analysis of a 60 GHz high gain wideband magneto electric dipole antenna array based on trapped printed gap waveguide technology. Scientific Reports, 15(1), 23649. doi:10.1038/s41598-025-08589-9.
[34] Wang, D. S., Zhao, P., & Chan, C. H. (2016). Design and Analysis of a High-Selectivity Frequency-Selective Surface at 60 GHz. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1694–1703. doi:10.1109/TMTT.2016.2557325.
[35] Luk, K. M., & Wong, H. (2006). A New Wideband Unidirectional Antenna Element. International Journal of Microwave and Optical Technology, 1(1), 35–44.
[36] Nagarnaik, S., & Mukherjee, J. (2023). Wideband low-profile magneto–electric dipole antenna stacked with patch and metasurface. Electronics Letters, 59(17), e12934. doi:10.1049/ell2.12934.
[37] Chen, Y., Zeng, F. chao, & Zhang, Z. Y. (2025). A Low-Profile Folded Magnetoelectric Dipole Antenna for Mobile Communication. IEEE Antennas and Wireless Propagation Letters, 24(5), 1139–1143. doi:10.1109/LAWP.2025.3527565.
[38] Tian, Y. Z., Pan, Y. M., Liu, X. Y., & Leung, K. W. (2023). An SIW-based wideband endfire filtering magneto-electric dipole antenna for millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 71(12), 9986-9991. doi:10.1109/TAP.2023.3328113.
[39] Yang, Y. H., Liu, B. Y., & Zhou, S. G. (2023). A Wideband Cavity-Backed Dual-Polarized Antenna for X-Band Applications. IEEE Antennas and Wireless Propagation Letters, 22(4), 913–917. doi:10.1109/LAWP.2022.3228119.
[40] Yang, S. J., Pan, Y. M., Zhang, Y., Gao, Y., & Zhang, X. Y. (2019). Low-Profile Dual-Polarized Filtering Magneto-Electric Dipole Antenna for 5G Applications. IEEE Transactions on Antennas and Propagation, 67(10), 6232–6243. doi:10.1109/TAP.2019.2925151.
[41] Qian, Z., Huang, Y., Wang, B., Qin, Q., Ge, L., & Mao, J. (2025). A Low-Profile Filtering Magneto-Electric Dipole Antenna Based on High-Density-Interconnect (HDI) Packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 15(1), 206–213. doi:10.1109/TCPMT.2024.3507083.
[42] Yu, B., Qian, Z., Lin, C., Lin, J., Zhang, Y., Yang, G., & Luo, Y. (2021). A wideband MMWAVE antenna in fan-out wafer level packaging with tall vertical interconnects for 5g wireless communication. IEEE Transactions on Antennas and Propagation, 69(10), 6906–6911. doi:10.1109/TAP.2021.3087859.
[43] Swaminathan, M., Li, X., Vijay Kumar, L. N., Jia, X., Erdogan, S., Rehman, M. Ur, Huang, K. Q., Kim, J. W., Al-Juwhari, M., & Ahamed, M. (2025). Glass Packaging for 6G Applications. IEEE Microwave Magazine, 26(6), 46–64. doi:10.1109/MMM.2025.3540325.
[44] Dong, H. J., Kim, Y. B., Joung, J., & Lee, H. L. (2020). High gain and low-profile stacked magneto-electric dipole antenna for phased array beamforming. IEEE Access, 8, 180295-180304. doi:10.1109/ACCESS.2020.3027813.
[45] Chen, Z. N., Liu, D., Nakano, H., Qing, X., & Zwick, T. (2016). Handbook of antenna technologies. In Handbook of Antenna Technologies. Springer Publishing Company, Singapore. doi:10.1007/978-981-4560-44-3.
[46] Sosa, G. H. (2011). Electrical modeling and optimization of multilayer via transitions for fully-integrated systems. Doctoral dissertation, Doktora Tezi, National Institute for Astrophysics, Optics and Electronics (INAOE), Elektronik Bölümü, Tonantzintla, Puebla, México.
[47] Hong, J. S. (2011). Microstrip Filters for RF/Microwave Applications, Second Edition. In Microstrip Filters for RF/Microwave Applications. Wiley, New York, United States. doi:10.1002/9780470937297.
[48] Baena, J. D., Bonache, J., Martín, F., Sillero, R. M., Falcone, F., Lopetegi, T., Laso, M. A. G., García-García, J., Gil, I., Portillo, M. F., & Sorolla, M. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, 53(4-II), 1451–1460. doi:10.1109/TMTT.2005.845211.
[49] Komanduri, V. R., Jackson, D. R., Williams, J. T., & Mehrotra, A. R. (2013). A general method for designing reduced surface wave microstrip antennas. IEEE Transactions on Antennas and Propagation, 61(6), 2887–2894. doi:10.1109/TAP.2013.2254441.
[50] Fang, Y., & Zhang, Y. P. (2021). On Surface-Wave Suppression of Differential Circular Microstrip Antennas. IEEE Antennas and Wireless Propagation Letters, 20(9), 1691–1695. doi:10.1109/LAWP.2021.3093763.
[51] Bhattacharyya, A. K. (2006). Phased array antennas: Floquet analysis synthesis. BFNs and Active Array Systems. Wiley, New York, United States.
[52] Yoon, H. J., & Min, B. W. (2017). Two section wideband 90° hybrid coupler using parallel-coupled three-line. IEEE Microwave and Wireless Components Letters, 27(6), 548–550. doi:10.1109/LMWC.2017.2701304.
[53] Chiu, L. (2014). Wideband microstrip 90 hybrid coupler using high pass network. International Journal of Microwave Science and Technology, 2014(1), 854346. doi:10.1155/2014/854346.
[54] Choi, J. R., Cheon, S. J., Lee, H. J., Lee, S. Bok, Park, B., & Lee, H. (2025). Ultra-wideband electromagnetic wave absorption in mmWave using dual-loss engineered M-type hexaferrite: A wave cancellation approach. Materials and Design, 255, 114220. doi:10.1016/j.matdes.2025.114220.
[55] Govindarajan, G., Mohammed, G. N. A., Savarimuthu, K., & Veeraselvam, A. (2023). Miniaturized electromagnetic absorber for millimeter-wave RADAR systems. Applied Physics A: Materials Science and Processing, 129(8), 557. doi:10.1007/s00339-023-06857-x.
[56] Xi, B., Xiao, Y., Li, M., Li, Y., Sun, H., & Chen, Z. (2021). Wide-Angle Scanning Phased Array Antennas Using Metasurface Slabs. IEEE Transactions on Antennas and Propagation, 69(12), 9003–9008. doi:10.1109/TAP.2021.3098569.
[57] Zhang, Y. (2024). Differential Antennas: Theory and Practice. John Wiley & Sons, Inc., New Jersey, United States.
[58] Li, Q., Peng, L., Zhang, X., Tang, J., Pang, X., Zhao, S., Xu, K., & Ye, D. (2025). Wide-Angle Surface Wave Reduction Based on Spatial Kramers–Kronig Media. IEEE Transactions on Antennas and Propagation, 73(8), 5658–5666. doi:10.1109/TAP.2025.3567468.
[59] Ramos, A., Varum, T., & Matos, J. N. (2023). A Review on Mutual Coupling Reduction Techniques in mmWaves Structures and Massive MIMO Arrays. IEEE Access, 11, 143143–143166. doi:10.1109/ACCESS.2023.3343107.
[60] Narayanaswamy, N. K., Satheesha, T. Y., Alzahrani, Y., Pandey, A., Dwivedi, A. K., Singh, V., & Tolani, M. (2024). Metasurface absorber for millimeter waves: a deep learning-optimized approach for enhancing the isolation of wideband dual-port MIMO antennas. Scientific Reports, 14(1), 30199. doi:10.1038/s41598-024-81854-5.
[61] Usman Raza, M., Zhang, K., & Yan, S. (2024). Metasurface-Assisted mutual coupling suppression in circularly polarized MIMO antenna array for Sub-6 GHz applications. Materials and Design, 248, 113445. doi:10.1016/j.matdes.2024.113445.
[62] Zhang, J., Zhang, S., Dong, J., Wang, M., Luo, H., Wu, R., & Xiao, C. (2025). Design of an ultra-wideband flexible optically transparent metamaterial absorber with wide-angle and polarization stability. Materials and Design, 253, 113921. doi:10.1016/j.matdes.2025.113921.
[63] Zhou, H., Geng, J., & Jin, R. (2022). A Magnetic Yagi-Uda Antenna with Vertically Polarized Endfire Radiation in Millimeter-Wave Band Applying Higher Order Mode. IEEE Transactions on Antennas and Propagation, 70(10), 8941–8950. doi:10.1109/TAP.2022.3177476.
[64] Song, Y., Luo, Y., Yan, N., Hou, Y., An, W., & Ma, K. (2025). Compact and Gain-Enhanced Directive Endfire Higher-Order-Mode Meander Dipole via Asymmetrically Loading Stubs. IEEE Transactions on Antennas and Propagation, 73(2), 706–714. doi:10.1109/TAP.2024.3474185.
[65] Guha, D., Banerjee, A., Kumar, C., & Antar, Y. M. M. (2012). Higher order mode excitation for high-gain broadside radiation from cylindrical dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 60(1), 71–77. doi:10.1109/TAP.2011.2167922.
[66] Sun, L., Li, Y., & Zhang, Z. (2022). Wideband Dual-Polarized Endfire Antenna Based on Compact Open-Ended Cavity for 5G Mm-Wave Mobile Phones. IEEE Transactions on Antennas and Propagation, 70(3), 1632–1642. doi:10.1109/TAP.2021.3113701.
[67] Haupt, R. L. (2015). Adaptively thinned arrays. IEEE Transactions on Antennas and Propagation, 63(4), 1626–1632. doi:10.1109/TAP.2015.2394785.
[68] Merrill, S., & Skolnik, E. (2008). Radar Handbook. McGraw Hill, New York, United States.
[69] Vigano, M. C. (2011). Sunflower array antenna for multi-beam satellite applications. TU Delft Repository, Delft, Netherland. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A33e95433-514f-4367-8385-ae3cc9ddc6f5 (accessed on November 2025).
[70] Song, C., Bennett, E. L., Xiao, J., & Huang, Y. (2021). Multimode Hybrid Antennas Using Liquid Dielectric Resonator and Magneto-Electric Dipole. IEEE Transactions on Antennas and Propagation, 69(6), 3132–3143. doi:10.1109/TAP.2020.3037765.
[71] Du, J. K., So, K., Ra, Y., Jung, S. Y., Kim, J., Kim, S. Y., Woo, S., Kim, H. T., Ho, Y. C., & Paik, W. (2017). Dual-polarized patch array antenna package for 5G communication systems. 2017 11th European Conference on Antennas and Propagation, EUCAP 2017, 3493–3496. doi:10.23919/EuCAP.2017.7928848.
[72] Feng, B., Chen, J., Chung, K. L., Wang, L., & Li, Y. (2022). Dual-polarized Filtering Magneto-Electric Dipole Antenna Arrays with High Radiation-Suppression Index for 5G New Radio n258 Operations. IEEE Transactions on Antennas and Propagation, 70(4), 3058–3063. doi:10.1109/TAP.2021.3121095.
[73] Yang, X. X., Qiu, H., Lou, T., Yi, Z., Cao, Q. D., & Gao, S. (2022). Circularly Polarized Millimeter Wave Frequency Beam Scanning Antenna Based on Aperture-Coupled Magneto-Electric Dipole. IEEE Transactions on Antennas and Propagation, 70(9), 7603–7611. doi:10.1109/TAP.2022.3191983.
[74] Zhao, L., Li, Y., Wang, J., & Ge, L. (2023). A Study on Millimeter-Wave Magneto-Electric Dipole Phased Arrays for 5G Dual-Band Applications. IEEE Transactions on Antennas and Propagation, 71(3), 2375–2384. doi:10.1109/TAP.2022.3209173.
[75] Li, Y., Jian, P., Xi, D., Wu, F., Jiang, Z. H., & Hong, W. (2024). A Wideband Transmitarray Antenna Based on True-Time Delay Magneto-Electric Dipole Elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(7), 3353–3357. doi:10.1109/TCSII.2024.3366658.
[76] Zhao, D., Gu, P., Yi, Y., Zhang, J., Xu, C., Yang, M., Chen, Z., Chai, Y., Liu, H., Jiang, S., Yan, X., & You, X. (2023). A K-Band Hybrid-Packaged Temperature-Compensated Phased-Array Receiver and Integrated Antenna Array. IEEE Transactions on Microwave Theory and Techniques, 71(1), 409–423. doi:10.1109/TMTT.2022.3225289.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















