A Novel Statistical Process Control Approach for PM2.5 Monitoring Using Time Series Modeling
Downloads
This research seeks to create a novel control chart capable of managing autocorrelated time series data by proposing a modified Exponentially Weighted Moving Average (EWMA) approach tailored to processes following the ARMA(p,q) model, which also makes use of exponential white noise. The key methodological contribution involves an explicit formula to compute the Average Run Length (ARL), while the Numerical Integral Equation (NIE) approach is utilized for verification purposes. The proposed formula not only demonstrated 100% agreement with NIE results but also significantly reduced computational time, requiring less than 0.001 seconds per run, compared to the 3–4 seconds typically needed by NIE. To assess the performance, simulation experiments and real-world case studies on PM2.5 air pollution data from Nakhon Phanom, Nan, and Nonthaburi provinces in Thailand were conducted. Our modified control chart was better at identifying minimal changes than a standard EWMA chart, as shown by lower ARL1, SDRL1, AEQL, and optimal PCI values. The one-sided chart structure, designed to monitor upward shifts in pollutant levels, further supports its application in environmental surveillance. Overall, the study introduces a fast, accurate, and practical tool for quality control in autocorrelated environments, offering both analytical and computational advantages over existing methods.
Downloads
[1] Ni, H., Tian, J., Wang, X., Wang, Q., Han, Y., Cao, J., Long, X., Chen, L. W. A., Chow, J. C., Watson, J. G., Huang, R. J., & Dusek, U. (2017). PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment, 169, 229–237. doi:10.1016/j.atmosenv.2017.08.063.
[2] World Health Organization (WHO). (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization (WHO), Geneva, Switzerland.
[3] Suriyawong, P., Chuetor, S., Samae, H., Piriyakarnsakul, S., Amin, M., Furuuchi, M., Hata, M., Inerb, M., & Phairuang, W. (2023). Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon, 9(3), 14261. doi:10.1016/j.heliyon.2023.e14261.
[4] Guo, J., Chai, G., Song, X., Hui, X., Li, Z., Feng, X., & Yang, K. (2023). Long-term exposure to particulate matter on cardiovascular and respiratory diseases in low- and middle-income countries: A systematic review and meta-analysis. Frontiers in Public Health, 11, 1134341. doi:10.3389/fpubh.2023.1134341.
[5] Pun, V. C., Kazemiparkouhi, F., Manjourides, J., & Suh, H. H. (2017). Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. American Journal of Epidemiology, 186(8), 961–969. doi:10.1093/aje/kwx166.
[6] World Bank. (2022). Thailand economic monitor: The environmental impact of air pollution. The World Bank Group, Washington, United States.
[7] Emprasertsuk, W., Tansawet, A., Wabina, R. S. R., & Suppasilp, C. (2025). Association between Wildfire area and PM2.5 levels on the Prevalence of Mental disorders in Thailand. Environmental Challenges, 20, 101184. doi:10.1016/j.envc.2025.101184.
[8] Kliengchuay, W., Wen, B., Aye, T. S., Aung, H. W., Suwanmanee, S., Tawatsupa, B., Laor, P., Kongpran, J., Wongsantichon, J., Xu, R., Li, S., Hashizume, M., Guo, Y., & Tantrakarnapa, K. (2025). Effect modification of fine particulate matter (PM2.5) related hospital admissions by temperature in Thailand: A nationwide time-series study. Environmental Research, 277, 121467. doi:10.1016/j.envres.2025.121467.
[9] Wongwatcharapaiboon, J. (2020). Review Article: Toward future particulate matter situations in Thailand from supporting policy, network and economy. Future Cities and Environment, 6(1),79. doi:10.5334/fce.79.
[10] W.H.O. (2021). Health effects of particulate matter: Policy implications for countries in eastern Europe, Caucasus and central Asia. World Health Organization (W.H.O.), Geneva, Switzerland.
[11] Soontornpipit, P., Lekawat, L., Tritham, C., Tritham, C., Pongpaibool, P., Prasertsuk, N., & Jirakitpuwapat, W. (2024). PM2.5 Prediction & Air Quality Classification UsinMachine Learning. Thai Journal of Mathematics, 22(2), 441-452.
[12] Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Hoboken, United States.
[13] da Silva, G. J., & Borges, A. C. (2025). Statistical Process Control in the Environmental Monitoring of Water Quality and Wastewaters: A Review. Water (Switzerland), 17(9), 1281. doi:10.3390/w17091281.
[14] Arciszewski, T. J. (2023). A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs. Environments, 10(5), 78. doi:10.3390/environments10050078.
[15] Srisang, W., Jaroensutasinee, K., Jaroensutasinee, M., Khongthong, C., Piamonte, J. R. P., & Sparrow, E. B. (2024). PM2.5 IoT Sensor Calibration and Implementation Issues Including Machine Learning. Emerging Science Journal, 8(6), 2267–2277. doi:10.28991/ESJ-2024-08-06-08.
[16] Shewhart, W. A. (2022). Economic control of quality of manufactured product. Barakaldo Books, London, United Kingdom.
[17] Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100. doi:10.2307/2333009.
[18] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239–250. doi:10.1080/00401706.1959.10489860.
[19] Khan, Z., Saghir, A., Katona, A., & Kosztyán, Z. T. (2025). EWMA control chart framework for efficient Maxwell quality characteristic monitoring: An application to the aerospace industry. Computers & Industrial Engineering, 200, 110753. doi:10.1016/j.cie.2024.110753.
[20] Kazmi, M. W., & Noor-ul-Amin, M. (2025). Integrating machine learning based EWMA control charts for multivariate process monitoring. Computers & Industrial Engineering, 204, 111131. doi:10.1016/j.cie.2025.111131.
[21] Patel, A. K., & Divecha, J. (2011). Modified exponentially weighted moving average (EWMA) control chart for an analytical process data. Journal of Chemical Engineering and Materials Science, 2(1), 12-20.
[22] Khan, N., Aslam, M., & Jun, C. (2016). Design of a Control Chart Using a Modified EWMA Statistic. Quality and Reliability Engineering International, 33(5), 1095–1104. doi:10.1002/qre.2102.
[23] Rasheed, Z., Zhang, H., Khan, M., & Anwar, S. M. (2025). Modified exponentially weighted moving average control chart for monitoring process dispersion. Communications in Statistics-Simulation and Computation, 54(9), 3545-3572. doi:10.1080/03610918.2024.2358137.
[24] Supharakonsakun, Y., & Areepong, Y. (2023). ARL Evaluation of a DEWMA Control Chart for Autocorrelated Data: A Case Study on Prices of Major Industrial Commodities. Emerging Science Journal, 7(5), 1771–1786. doi:10.28991/ESJ-2023-07-05-020.
[25] Phanthuna, P., & Areepong, Y. (2022). Detection Sensitivity of a Modified EWMA Control Chart with a Time Series Model with Fractionality and Integration. Emerging Science Journal, 6(5), 1134–1152. doi:10.28991/ESJ-2022-06-05-015.
[26] Imtiaz, A., Khan, N., Saleem, M., & Aslam, M. (2025). Development and application of a modified EWMA control chart for early detection of process shifts in skewed distributions. Journal of the Chinese Institute of Engineers, 48(5), 680–690. doi:10.1080/02533839.2025.2479121.
[27] Niaz, A., Khan, M., & Ijaz, M. (2025). One-Sided Modified EWMA Control Charts for Monitoring Time Between Events. Quality and Reliability Engineering International, 41(4), 1293–1318. doi:10.1002/qre.3718.
[28] Khamrod, S., Areepong, Y., Sukparungsee, S., & Sunthornwat, R. (2024). One-Sided and Two-Sided New Modified EWMA control chart for Detecting Increases in Process Mean. WSEAS Transactions on Systems and Control, 19, 473–488. doi:10.37394/23203.2024.19.50.
[29] Karoon, K., Areepong, Y., & Sukparungsee, S. (2023). Modification of ARL for detecting changes on the double EWMA chart in time series data with the autoregressive model. Connection Science, 35(1), 2219040. doi:10.1080/09540091.2023.2219040.
[30] Serrin, J. (1971). Gradient Estimates for Solutions of Nonlinear Elliptic and Parabolic Equations. Contributions to Nonlinear Functional Analysis, 565–601, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-775850-3.50017-0.
[31] Phanyaem, S. (2021). The integral equation approach for solving the average run length of EWMA procedure for autocorrelated process. Thailand Statistician, 19(3), 627–641.
[32] Fonseca, A., Ferreira, P. H., Do Nascimento, D. C., Fiaccone, R., Ulloa-Correa, C., García-Piña, A., & Louzada, F. (2021). Water particles monitoring in the Atacama desert: SPC approach based on proportional data. Axioms, 10(3), 154. doi:10.3390/axioms10030154.
[33] Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2022). The triple exponentially weighted moving average control chart for monitoring Poisson processes. Quality and Reliability Engineering International, 38(1), 532–549. doi:10.1002/qre.2999.
[34] Paichit, P., & Peerajit, W. (2022). The average run length for continuous distribution process mean shift detection on a modified EWMA control chart. Asia-Pacific Journal of Science and Technology, 27(6), 1-13..
[35] Supharakonsakun, Y., Areepong, Y., & Sukparungsee, S. (2020). Monitoring the Process Mean of a Modified EWMA Chart for ARMA(1,1) Process and Its Application. Suranaree Journal of Science and Technology, 27(4), 1–11.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















