Extrusion Technology for Complex Processing of Brewery Waste Into Feed Products for Livestock and Poultry
Downloads
An energy-efficient extrusion technology for the complex processing of wet brewing waste into feed products for animals and poultry is proposed and evaluated. The study aims to replace traditional energy-intensive drying methods – typically involving natural gas, steam, or boiler exhaust gases – with a more sustainable extrusion process. The approach allows direct utilization of wet brewing by-products, such as brewers’ grains and brewers’ yeast, without preliminary drying, thereby reducing energy consumption by up to 50%. The technological development was based on systems analysis and synthesis of extrusion processes, combining wet brewing waste with dry feed components. The research identified optimal parameters for extrusion: a feed mixture to compound feed component ratio of 1:1.85–2; initial moisture content of 28–30%; extrusion temperature of 140–150 °C; and barrel pressure of 4–8 MPa. The final product was a partially dehydrated mass with a moisture content of 60–65%, suitable for use as a feed additive or complete compound feed. The results demonstrate improved product quality and extended shelf life due to thermal and mechanical treatment during extrusion. The novelty of the approach lies in bypassing the conventional drying step, offering a cost-effective and environmentally friendly way to increase the value of brewing industry waste.
Downloads
[1] Doskalieva, B. B., Baidalinova, A. S., Doskalieva, B., & Baidalinova, A. (2020). Development of the Agro-Industrial Complex as the Basis of Food Security in Kazakhstan. Bulletin of the Kazakh University of Economics, Finance and International Trade, 3(40), 36–43. doi:10.52260/2304-7216.2020.3(40).4.
[2] Vashchenko, V. V., & Rudenko, E. Y. (2018). Possibility of Using the Fulfilled Diatomaceous Earth from the Brewing Industry. News of Universities: Food Technology, 1(361), 15-18. doi:10.26297/0579-3009.2018.1.4. (In Russian).
[3] Donskova, L. A., & Brashko, I. S. (2024). Development of Technology of Collagen-Containing Food Additive for Use in Meat Systems. Bulletin of the South Ural State University Series Food and Biotechnology, 12(4), 13–21. doi:10.14529/food240402.
[4] Chelkapally, S. C., Terrill, T. H., Ogunade, I. M., Estrada-Reyes, Z. M., & Pech-Cervantes, A. A. (2025). Meta-analysis of the effects of the dietary inclusion of brewers grains on feed intake, milk yield, and feed efficiency of lactating dairy cows. JDS Communications, 6(3), 299–303. doi:10.3168/jdsc.2024-0626.
[5] Chornyi, V. V., & Khomyak, S. V. (2024). Production technologies, modern research and the Ukrainian market of sour beer and beer of spontaneous fermentation. Chemistry, Technology and Application of Substances, 7(2), 146–152. doi:10.23939/ctas2024.02.146.
[6] Khusnitdinova, M., Abdrakhmanova, A., Pozharskiy, A., Kapytina, A., Kerimbek, N., Nizamdinova, G., Taskuzhina, A., Adilbayeva, K., Kolchenko, M., & Gritsenko, D. (2023). Problems and prospects of sugar beet cultivation in Kazakhstan. Agronomy Research, 21(3), 1174–1185. doi:10.15159/AR.23.094.
[7] Lazarevich A.N., Lesnov A.P., Ivanova O.V. (2015). Technology of production and application of feed product and concentrate based on brewer’s grains: Recommendations. FGBNU Krasnoyarsk Research Institute of Animal Husbandry. - Krasnoyarsk, Russia. Available online: https://www.zakvaska.ru/images/_z_files/Instructions/techprod_15.12.15.pdf (accessed on November 2025) (In Russian).
[8] Dautkanov, N. B., & Dautkanova, D. R. (2022). Production of Sugar Beet in the Zhambyl Region of Kazakhstan in 2021. Bulletin of the Korkyt Ata Kyzylorda University, 62(3), 157–168. doi:10.52081/bkaku.2022.v62.i3.091.
[9] Kumar, P., Chitara, D., Sengupta, S., Banerjee, P., & Rai, S. N. (2025). Microbial consortia in biotechnology: applications and challenges in industrial processes. 3 Biotech, 15(11), 386. doi:10.1007/s13205-025-04558-1.
[10] da S. Pereira, A., Souza, C. P., Franson, R. C., Ferreira, T. F., & Amaral, P. F. (2024). From agri-food wastes to enzyme production: A systematic review with Methodi Ordinatio. Waste and Biomass Valorization, 15(10), 5843-5870. doi:10.1007/s12649-024-02565-6.
[11] Amerkhanov, K. A., & Mironova, O. A. (2024). Quality and Safety of Fermented Feed for Pigs Using Agricultural Waste. Pig-Breeding, 8(8), 19–22. doi:10.37925/0039-713x-2024-8-19-22.
[12] Korotkova, T. G., & Danilchenko, A. S. (2021). Improvement of Processing Technology Brewer’s Grains to Dry Forage Additive. News of Universities: Food Technology, 1(379), 59–62. doi:10.26297/0579-3009.2021.1.14. (In Russian).
[13] Osepchuk, D., Labutina, N., Danilova, A., Vlasov, A., & Svistunov, A. (2025). Use of Additive Based on Processed Brewer’s Grains in Poultry Feeding. Bulletin of KSAU, 0(6), 83–89. doi:10.36718/1819-4036-2023-6-83-89.
[14] Dmytruk, V., Gayvas, B., Markovych, B., & Dmytruk, A. (2025). On the issues of optimization and regulation of the convective drying process of materials in drying units. Drying Processes: Approaches to Improve Efficiency, 158–197, Technology Center PC®, Kharkiv, Ukraine. doi:10.15587/978-617-8360-09-2.ch5.
[15] Ben, A. E., Akeem, S. A., Ndukwu, M. C., Samuel, N. A., Onyenwigwe, D., Simo-Tagne, M., & Djoukeng, H. G. (2025). Review of the Mechanisms, Pros and Cons of Some Drying Technologies Applicable to Agricultural Food Products’ Processing. Journal of Food Process Engineering, 48(6), 70163. doi:10.1111/jfpe.70163.
[16] Asrate, D. A., & Ali, A. N. (2025). Review on the recent trends of food dryer technologies and optimization methods of drying parameters. Applied Food Research, 5(1), 100927. doi:10.1016/j.afres.2025.100927.
[17] Ermolaev, V. A., Bondarchuk, O. N., & Makhacheva, E. V. (2025). Research of caviar vacuum drying processes. Vestnik MGTU, 28(2), 252–262. doi:10.21443/1560-9278-2025-28-2-252-262.
[18] Al Faruq, A., Farahnaky, A., Dokouhaki, M., Khatun, H. A., Trujillo, F. J., & Majzoobi, M. (2025). Technological Innovations in Freeze Drying: Enhancing Efficiency, Sustainability, and Food Quality. Food Engineering Reviews, 17(4), 859–883. doi:10.1007/s12393-025-09415-8.
[19] Ivashchuk, O. S., Atamanyuk, V. M., & Chyzhovych, R. A. (2024). Evaluation of the efficiency of filtration drying for industrial drying of brewer’s spent grain. Chemistry, Technology and Application of Substances, 7(2), 161-167. doi:10.23939/ctas2024.02.161.
[20] Zobova, S. N., Ostrikov, A. N., Frolova, L. N., Kopylov, M. V., & Bogomolov, I. S. (2021). Influence of technological modes on changes in the composition of beet pulp during its processing at the Borinsky sugar plant. Proceedings of the Voronezh State University of Engineering Technologies, 83(1), 71–77. doi:10.20914/2310-1202-2021-1-71-77.
[21] Novikova, A. (2024). Beet Pulp as a Possible Source of Inhibitory Substances of the Human Food Chain. Bulletin of KSAU, 3, 174–180. doi:10.36718/1819-4036-2023-3-174-180.
[22] Vičević, R., Božinović, M., Zekić, N., Novak, M., Grgić, D. K., Šalić, A., & Zelić, B. (2024). Development of a Two-Stage Bioprocess for the Production of Bioethanol from the Acid Hydrolysate of Brewer’s Spent Grain. Energies, 17(16), 3975. doi:10.3390/en17163975.
[23] Batishcheva, N.V. (2016). Innovative methods of utilization of brewer’s spent grains. Scientific Review: Technical Sciences, 6, 10–14.
[24] Jemai, A. B., & Vorobiev, E. (2006). Pulsed electric field assisted pressing of sugar beet slices: Towards a novel process of cold juice extraction. Biosystems Engineering, 93(1), 57–68. doi:10.1016/j.biosystemseng.2005.09.008.
[25] Paramasivam, C. (2024). Lactation performance of dairy buffaloes fed with wet brewer’s grain. International Journal of Advanced Biochemistry Research, 8(5S), 344–347. doi:10.33545/26174693.2024.v8.i5se.1194.
[26] Filippova, O. B., & Kostomakhin, N. M. (2024). Enterosorbent from modified glauconite concentrate in the feeding of young cattle. Feeding of Agricultural Animals and Feed Production, 2(2), 29–39. doi:10.33920/sel-05-2402-03. (In Russian).
[27] Keaokliang, O., Kawashima, T., Angthong, W., Suzuki, T., & Narmseelee, R. (2018). Chemical composition and nutritive values of cassava pulp for cattle. Animal Science Journal, 89(8), 1120–1128. doi:10.1111/asj.13039.
[28] Yazykbayev, Y., Iztayev, A., Kulazhanov, T., & Yakiyayeva, M. (2025). Development of an extrusion technology for pressed sugar beet pulp with dry feed components. International Journal of Agriculture and Biosciences 14(6), 1456-1464. doi:10.47278/journal.ijab/2025.174.
[29] Tultabayev, M., & Zhumanova, D. (2023). Optimization of the protein product formulation based on safflower production waste. BIO Web of Conferences, 64, 1018. doi:10.1051/bioconf/20236401018.
[30] Nemenuschaya, L. A., & Konovalenko, L. Y. (2023). Feed Production Based on Recycling’s Technologies. Equipment and Technologies in Animal Husbandry, 2(50), 80–84. doi:10.22314/27132064-2023-2-80. (In Russian).
[31] Gaponov, N. V., Grinets, L. V., Dzholiev, I. M. O., Shingareva, N. I., & Vyatkina, G. V. (2025). Nutritional value and economic efficiency of production of complete compound feeds based on blue lupine. BIO Web of Conferences, 179, 1003. doi:10.1051/bioconf/202517901003.
[32] Minevich, I. E., Goncharova, A. A., & Zaitseva, L. A. (2021). Influence of extrusion on the feed value of flax seeds. Agrarian Science, 9(9), 57–61. doi:10.32634/0869-8155-2021-352-9-57-61.
[33] Selina, Т. V., & Yadrishchenskaya, O. A. (2025). Hulless barley in compound feed for broiler chickens. Feeding of Agricultural Animals and Feed Production, 5, 13–21. doi:10.33920/sel-05-2505-02. (In Russian).
[34] Duque-Estrada, P., Hardiman, K., Bøgebjerg Dam, A., Dodge, N., Aaslyng, M. D., & Petersen, I. L. (2023). Protein blends and extrusion processing to improve the nutritional quality of plant proteins. Food & Function, 14(16), 7361–7374. doi:10.1039/d2fo03912e.
[35] Yazykbayev, E.S. (2022). Method for producing compound feed with sugar production waste (Republic of Kazakhstan Patent No. 35648). Published May 6, 2022 (Application filed January 28, 2021; Bulletin No. 18). Available online https://gosreestr.kazpatent.kz/Invention/DownLoadFilePdf?patentId=336871&lang=ru (accessed on November 2025).
[36] Anwar Alsaliheen, E. A., Susol, R., & Kirovych, N. (2023). Use of Rye Silage and Brewer’S Grains in Dairy Cow Diets. Agrarian Bulletin of the Black Sea Region, 109, 10–18. doi:10.37000/abbsl.2023.109.02. (In Ukrainian).
[37] Cueva, S. F., Räisänen, S. E., Wasson, D. E., Lage, C. F. A., Silvestre, T., Kniffen, D. M., Fabin, R. A., & Hristov, A. N. (2023). Production effects of extruded soybean meal replacing canola meal in the diet of lactating dairy cows. Journal of Dairy Science, 106(9), 6198–6215. doi:10.3168/jds.2022-22818.
[38] Marshall, C. M., Lee, S. A., & Stein, H. H. (2024). 240 Feed preference of weanling pigs fed diets containing extruded corn ground to different particle sizes. Journal of Animal Science, 102(Supplement_3), 234–235. doi:10.1093/jas/skae234.272.
[39] Upinin, M. S., Lavrentiev, A. Y., & Kostomakhin, N. M. (2024). Influence of complex additives on growth, development and reproduction ability of replacement heifers. Feeding of Agricultural Animals and Feed Production, 12(12), 3–19. doi:10.33920/sel-05-2412-01. (In Russian).
[40] Bogomolov, I. S., Afanasiev, V. A., & Mishinev, K. V. (2024). Digital Technologies for Managing of New Generation Modular Feed Mills. Compound Feed, 7(7), 40–42. doi:10.69539/2413-287x-2024-07-2-223. (In Russian).
[41] Miralimova, A. I., Tursunxodjaev, P., & Baltabayev, U. N. (2021). Development of Compound Feed Recipes in the Composition Local Raw Materials. The American Journal of Agriculture and Biomedical Engineering, 3(1), 20–30. doi:10.37547/tajabe/volume03issue01-05.
[42] Pakhomov, V. I., Braginets, S. V., Bakhchevnikov, O. N., Alferov, A. S., & Rudoy, D. V. (2020). Extrusion technologies of feed and food including biomass of insects (Review). Agricultural Science Euro-North-East, 21(3), 233–244. doi:10.30766/2072-9081.2020.21.3.233-244.
[43] Jeong, I., Na, S. W., Kang, H. J., Park, S. J., Jung, D. J. S., Beak, S. H., Lee, J., Kim, D. H., Kim, H. J., Malekkhahi, M., Ranaweera, K. K. T. N., & Baik, M. (2022). Partial Substitution of Corn Grain in the Diet with Beet Pulp Reveals Increased Ruminal Acetate Proportion and Circulating Insulin Levels in Korean Cattle Steers. Animals, 12(11), 1419. doi:10.3390/ani12111419.
[44] Iztayev, A., Yakiyayeva, M., Kulazhanov, T., Kizatova, M., Maemerov, M., Stankevych, G., ... & Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. Acta Technica 63(1B/2018), 1-8.
[45] Lankhorst, C., Tran, Q. D., Havenaar, R., Hendriks, W. H., & van der Poel, A. F. B. (2007). The effect of extrusion on the nutritional value of canine diets as assessed by in vitro indicators. Animal Feed Science and Technology, 138(3–4), 285–297. doi:10.1016/j.anifeedsci.2006.11.015.
[46] Iztayev, A., Urazaliev, R., Yakiyayeva, M., Maemerov, M., Shaimerdenova, D., Iztayev, B., ... & Dauletkeldi, Y. (2018). Regress models of ion-ozon treatment without and with cavitation, describing changes of indicators for grain crops quality. Acta Technica 63(1B/2018), 1-8.
[47] Basova, E. A., Yadrishchenskaya, O. A., Shpуnova, S. A., & Selina, T. V. (2023). Influence of change in the energy and amino acid nutritional value of compound feed on the meat productivity of quails. Feeding of Agricultural Animals and Feed Production, 8, 39–47. doi:10.33920/sel-05-2308-04. (In Russian).
[48] Daisheva, N., Semenihin, S., Gorodeckiy, V., Usmanov, M., Fabrickaya, A., & Kotlyarevskaya, N. (2025). Influence of Emf Mw Treating Modes of Pressed Beet Pulp on Efficiency of Pectin Extraction. Bulletin of KSAU, 6, 160–166. doi:10.36718/1819-4036-2023-6-160-166.
[49] Astrakhantsev, A. A., & Perevozchikov, M. A. (2024). Efficiency of egg poultry farming at different durations of different recipes of compound feed feeding. Feeding of Agricultural Animals and Feed Production, 2, 3-16. doi:10.33920/sel-05-2402-01. (In Russian).
[50] Vorona, N., & Makarynska, A. (2021). Development of Compound Feed Recipes for Geese and Determination of Their Quality. Grain Products and Mixed Fodder’s, 21(1), 31–36. doi:10.15673/gpmf.v21i1.2094.
[51] Zhiyenbayeva, S. T., Yermukanova, A. M., Kultayeva, D. S., & Stankevych, G. N. (2024). Development of compound feed recipes for broiler chickens (13-28 days) using vermiculite. The Journal of Almaty Technological University, 143(1), 32–37. doi:10.48184/2304-568x-2024-1-32-37.
[52] Ahmad, A., Karim, A., Arfah, R. A., Agus, R., Ladju, R. B., Hidayah, N., … Irfandi, R. (2024). Expression and Epitope Prediction of the Sirohydrochlorin Cobaltochelatase Isolated from a Local Strain of Mycobacterium Tuberculosis. Emerging Science Journal, 8(4), 1345–1365. doi:10.28991/ESJ-2024-08-04-07.
[53] Kukhar, Y., Uskenov, R., & Bostanova, S. (2025). Development of a Feed Additive Based on Domestic Plant Raw Materials for the Production of Organic Beef Cattle Products. Intelligence Idea Innovation, 1, 150–161. doi:10.52269/22266070_2025_1_150. (In Russian).
[54] Bordun, T., & Iegorov, B. (2022). Innovative Approaches in the Formation of Compound Feed Recipes for Decorative Birds and Singing Birds and Technology of Compound Feed Production for Them. Grain Products and Mixed Fodder’s, 21(3), 29–37. doi:10.15673/gpmf.v21i3.2231.
[55] Priporov, I. E. (2024). Modeling of the Producing Concentrated Compound Feed when Changing the Compound Feed Machinery. Engineering Technologies and Systems, 34(2), 191–212. doi:10.15507/2658-4123.034.202402.191-212.
[56] Alekseeva, N. M., Borisova, P. P., & Nikolaeva, N. A. (2021). Influence of new recipes of feed additives on the biochemical status of the blood of Simmental cattle in Yakutia. The Agrarian Scientific Journal, 8(8), 62–66. doi:10.28983/asj.y2021i8pp62-66.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















