Artificial Intelligence in Recruitment: A Multivocal Review of Benefits, Challenges, and Strategies
Downloads
This study investigates the role of artificial intelligence (AI) in recruitment, with a specific emphasis on small and medium enterprises (SMEs) and cultural diversity, two dimensions frequently underrepresented in existing research. The objective is to evaluate the benefits, challenges, and strategies for the responsible adoption of AI in recruitment. To achieve this, a Multivocal Literature Review (MLR) was conducted, systematically synthesising peer-reviewed studies and grey literature published from 2018 onwards. Following Kitchenham’s systematic review guidelines and Garousi’s multivocal extensions, academic and practitioner perspectives were analysed to capture both theoretical insights and real-world practices. The findings indicate that AI can streamline recruitment processes, improve decision-making accuracy, and enhance candidate experience through tools such as résumé screening, predictive analytics, and generative AI applications. However, issues of algorithmic bias, limited transparency, data quality, regulatory compliance, and workforce scepticism persist, particularly in SMEs that face resource constraints. Although much of the available evidence reflects Western contexts, this review broadens the scope by integrating global perspectives and highlighting how cultural and regional factors influence AI acceptance. The novelty of this study lies in combining academic and industry evidence to propose actionable strategies—such as bias audits, explainable AI frameworks, and human-in-the-loop approaches—for more inclusive, sustainable, and globally relevant adoption of AI in recruitment.
Downloads
[1] Gan, C., Zhang, Q., & Mori, T. (2024). Application of LLM Agents in Recruitment: A Novel Framework for Automated Resume Screening. Journal of Information Processing, 32, 881–893. doi:10.2197/ipsjjip.32.881.
[2] Sun, H., Lin, H., Yan, H., Song, Y., Gao, X., & Yan, R. (2025). MockLLM: A Multi-Agent Behavior Collaboration Framework for Online Job Seeking and Recruiting. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2714-2724. doi:10.48550/arXiv.2405.18113.
[3] World Economic Forum, & PwC. (2025). Leveraging generative AI for job augmentation and workforce productivity. World Economic Forum, Cologny, Switzerland. Available online: https://www.weforum.org/publications/leveraging-generative-ai-for-job-augmentation-and-workforce-productivity/ (accessed on November 2025).
[4] Gaebler, J. D., Goel, S., Huq, A., & Tambe, P. (2024). Auditing the use of language models to guide hiring decisions. arXiv Preprint, arXiv:2404.03086. doi:10.48550/arXiv.2404.03086.
[5] Hofeditz, L., Clausen, S., Rieß, A., Mirbabaie, M., & Stieglitz, S. (2022). Applying XAI to an AI-based system for candidate management to mitigate bias and discrimination in hiring. Electronic Markets, 32(4), 2207–2233. doi:10.1007/s12525-022-00600-9.
[6] Chen, Z. (2023). Collaboration among recruiters and artificial intelligence: removing human prejudices in employment. Cognition, Technology and Work, 25(1), 135–149. doi:10.1007/s10111-022-00716-0.
[7] Hangartner, D., Kopp, D., & Siegenthaler, M. (2021). Monitoring hiring discrimination through online recruitment platforms. Nature, 589(7843), 572-576. doi:10.1038/s41586-020-03136-0.
[8] Lee, C. H., & Cha, K. J. (2023). FAT-CAT—Explainability and augmentation for an AI system: A case study on AI recruitment-system adoption. International Journal of Human Computer Studies, 171, 102976. doi:10.1016/j.ijhcs.2022.102976.
[9] Soleimani, M., Intezari, A., & Pauleen, D. J. (2022). Mitigating cognitive biases in developing AI-assisted recruitment systems: A knowledge-sharing approach. International Journal of Knowledge Management, 18(1), 1–18. doi:10.4018/IJKM.290022.
[10] Binns, R. (2020). On the apparent conflict between individual and group fairness. FAT* 2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 514–524. doi:10.1145/3351095.3372864.
[11] Mehta, M., Derasari, R., Patel, S., Kakadiya, A., Gandhi, R., Chaudhary, S., & Goswami, R. (2019). A service-oriented human capital management recommendation platform. 13th Annual IEEE International Systems Conference, Proceedings (SysCon 2019), 1-8. doi:10.1109/SYSCON.2019.8836842.
[12] Delecraz, S., Eltarr, L., Becuwe, M., Bouxin, H., Boutin, N., & Oullier, O. (2022). Responsible Artificial Intelligence in Human Resources Technology: An innovative inclusive and fair by design matching algorithm for job recruitment purposes. Journal of Responsible Technology, 11, 100041. doi:10.1016/j.jrt.2022.100041.
[13] Köchling, A., Wehner, M. C., & Warkocz, J. (2023). Can I show my skills? Affective responses to artificial intelligence in the recruitment process. Review of Managerial Science, 17(6), 2109–2138. doi:10.1007/s11846-021-00514-4.
[14] Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management, 33(6), 1125–1147. doi:10.1080/09585192.2021.1879206.
[15] Van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215–222. doi:10.1016/j.chb.2018.09.009.
[16] World Bank. (2023). SME Finance: Development News, Research, Data. World Bank, Washington, D.C., United States. Available online: https://www.worldbank.org/en/topic/smefinance (accessed on November 2025).
[17] Koivunen, S., Sahlgren, O., Ala-Luopa, S., & Olsson, T. (2023). Pitfalls and Tensions in Digitalizing Talent Acquisition: An Analysis of HRM Professionals’ Considerations Related to Digital Ethics. Interacting with Computers, 35(3), 435–451. doi:10.1093/iwc/iwad018.
[18] Gartner. (2023). What generative AI means for your talent strategy. Gartner, Connecticut, United States. Available online: https://www.gartner.com/en/insights/generative-ai-for-business (accessed on November 2025).
[19] Hmoud, B. I., & Várallyai, L. (2020). Artificial Intelligence in Human Resources Information Systems: Investigating its Trust and Adoption Determinants. International Journal of Engineering and Management Sciences, 5(1), 749–765. doi:10.21791/ijems.2020.1.65.
[20] Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215–226. doi:10.1016/j.bushor.2019.12.001.
[21] Hunkenschroer, A. L., & Luetge, C. (2022). Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda. Journal of Business Ethics, 178(4), 977–1007. doi:10.1007/s10551-022-05049-6.
[22] Meechang, K., Leelawat, N., Tang, J., Kodaka, A., & Chintanapakdee, C. (2020). The acceptance of using information technology for disaster risk management: A systematic review. Engineering Journal, 24(4), 111–132. doi:10.4186/ej.2020.24.4.111.
[23] Zheng, Z., Qiu, Z., Hu, X., Wu, L., Zhu, H., & Xiong, H. (2023). Generative job recommendations with large language model. arXiv Preprint, arXiv:2307.02157. doi:10.48550/arXiv.2307.02157.
[24] Kupfer, C., Prassl, R., Fleiß, J., Malin, C., Thalmann, S., & Kubicek, B. (2023). Check the box! How to deal with automation bias in AI-based personnel selection. Frontiers in Psychology, 14. doi:10.3389/fpsyg.2023.1118723.
[25] Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1), 100925. doi:10.1016/j.hrmr.2022.100925.
[26] Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Ver. 2.3 EBSE Technical Report. EBSE Technical Report, EBSE-2007-01.
[27] Garousi, V., Felderer, M., & Mäntylä, M. V. (2019). Guidelines for including grey literature and conducting multivocal literature reviews in software engineering. Information and Software Technology, 106, 101–121. doi:10.1016/j.infsof.2018.09.006.
[28] Rafiei, G., Farahani, B., & Kamandi, A. (2021). Towards Automating the Human Resource Recruiting Process. Proceedings of 5th National Conference on Advances in Enterprise Architecture, 43–47. doi:10.1109/NCAEA54556.2021.9690504.
[29] Hoftede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: software of the mind: intercultural cooperation and its importance for survival. McGraw-Hill, New York, United States.
[30] Vedapradha, R., Hariharan, R., David Winster Praveenraj, D., Sudha, E., & Ashok, J. (2023). Talent acquisition-artificial intelligence to manage recruitment. E3S Web of Conferences, 376, 5001. doi:10.1051/e3sconf/202337605001.
[31] LinkedIn. (2023). Future of Work Report: AI at Work. LinkedIn, California, United States. Available online: https://economicgraph.linkedin.com/research/future-of-work-report-ai (accessed on November 2025).
[32] Wilmers, N. (2024). Generative AI and the Future of Inequality: An MIT Exploration of Generative AI. McKinsey & Company, Illinois, United States. doi:10.21428/e4baedd9.777b7123.
[33] Ochmann, J., & Laumer, S. (2020). AI Recruitment: Explaining job seekers’ acceptance of automation in human resource management. WI2020 Zentrale Tracks, 1633–1648. doi:10.30844/wi_2020_q1-ochmann.
[34] Hemachandran, V. C., Kumar, K. A., Sikandar, S. A., Sabharwal, S., & Kumar, S. A. (2024). A study on the impact of artificial intelligence on talent sourcing. IAES International Journal of Artificial Intelligence, 13(1), 1–8. doi:10.11591/ijai.v13.i1.pp1-8.
[35] An, H., Acquaye, C., Wang, C., Li, Z., & Rudinger, R. (2024). Do Large Language Models Discriminate in Hiring Decisions on the Basis of Race, Ethnicity, and Gender?. arXiv Preprint, arXiv:2406.10486. doi:10.48550/arXiv.2406.10486.
[36] Ali, O., Shrestha, A., Soar, J., & Wamba, S. F. (2018). Cloud computing-enabled healthcare opportunities, issues, and applications: A systematic review. International Journal of Information Management, 43, 146–158. doi:10.1016/j.ijinfomgt.2018.07.009.
[37] Ali, O., Jaradat, A., Kulakli, A., & Abuhalimeh, A. (2021). A Comparative Study: Blockchain Technology Utilization Benefits, Challenges and Functionalities. IEEE Access, 9, 12730–12749. doi:10.1109/ACCESS.2021.3050241.
[38] Sadoughi, F., Ali, O., & Erfannia, L. (2020). Evaluating the factors that influence cloud technology adoption—comparative case analysis of health and non-health sectors: A systematic review. Health Informatics Journal, 26(2), 1363–1391. doi:10.1177/1460458219879340.
[39] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. doi:10.1016/j.jbusres.2021.04.070.
[40] Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19. doi:10.1016/j.ejor.2015.04.002.
[41] Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. doi:10.1177/1094428114562629.
[42] Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409. doi:10.1002/asi.21309.
[43] Harris, C. G. (2023). Mitigating Age Biases in Resume Screening AI Models. Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS, 36. doi:10.32473/flairs.36.133236.
[44] Scoble-Williams, N., Sinti, D., Vert, G., & Cantrell, S. (2024). Generative AI and the future of work. Deloitte. Available online: https://www.deloitte.com/global/en/services/consulting/research/generative-ai-and-the-future-of-work.html (accessed on July 2025).
[45] Sen, S., Kadam, S., & Ravi Kumar, V. V. (2023). Role of Artificial Intelligence-Enabled Recruitment Processes in Sourcing Talent. 6th International Conference on Information Systems and Computer Networks, ISCON 2023, 10112009. doi:10.1109/ISCON57294.2023.10112009.
[46] Radonjić, A., Duarte, H., & Pereira, N. (2024). Artificial intelligence and HRM: HR managers’ perspective on decisiveness and challenges. European Management Journal, 42(1), 57–66. doi:10.1016/j.emj.2022.07.001.
[47] Delecraz, S., Eltarr, L., Becuwe, M., Bouxin, H., Boutin, N., & Oullier, O. (2022). Making Recruitment More Inclusive: Unfairness Monitoring With a Job Matching Machine-Learning Algorithm. Proceedings - International Workshop on Equitable Data and Technology, FairWare 2022, 34–41. doi:10.1145/3524491.3527309.
[48] Li, L., Lassiter, T., Oh, J., & Lee, M. K. (2021). Algorithmic Hiring in Practice: Recruiter and HR Professional’s Perspectives on AI Use in Hiring. AIES 2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 166–176. doi:10.1145/3461702.3462531.
[49] Mathew, S., Oswal, N., & Ateeq, K. (2021). Artificial Intelligence (AI): Bringing a new revolution in Human Resource Management (HRM). 12th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2021, 2021-August, 211–218.
[50] Al-Alawi, A. I., Naureen, M., Alalawi, E. I., & Naser Al-Hadad, A. A. (2021). The Role of Artificial Intelligence in Recruitment Process Decision-Making. 2021 International Conference on Decision Aid Sciences and Application, DASA 2021, 197–203. doi:10.1109/DASA53625.2021.9682320.
[51] Mahmoud, A. A., Al Shawabkeh, T., Salameh, W. A., & Al Amro, I. (2019). Performance Predicting in Hiring Process and Performance Appraisals Using Machine Learning. 2019 10th International Conference on Information and Communication Systems, ICICS 2019, 110–115. doi:10.1109/IACS.2019.8809154.
[52] Syrigou, A., & Williams, S. (2023). Professionalism and professionalization in human resources (HR): HR practitioners as professionals and the organizational professional project. Journal of Professions and Organization, 10(2), 151-164. doi:10.1093/jpo/joad008.
[53] Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data and Society, 5(1), 2053951718756684. doi:10.1177/2053951718756684.
[54] Domański, R., Wojciechowski, H., Lewandowicz, J., & Hadaś, Ł. (2023). Digitalization of Management Processes in Small and Medium-Sized Enterprises—An Overview of Low-Code and No-Code Platforms. Applied Sciences (Switzerland), 13(24), 13078. doi:10.3390/app132413078.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















