A New Scale for Evaluating Disclosure in Earnings Calls on Emerging Markets
Downloads
Corporate disclosure via earnings calls is a vital mechanism for financial transparency and stakeholder communication, enabling investors to evaluate firms’ performance, governance practices, and strategic direction. Yet existing approaches to assessing disclosure quality are often outdated, fragmented, or narrowly focused on sustainability, thereby neglecting the governance dimension of transparency. This study develops and validates a comprehensive, reliable, and optimized scale to measure the quality of corporate disclosure in earnings calls, integrating both sustainability and governance perspectives. Using a systematic scale-development process grounded in a robust conceptual framework, we collected data from 74 investors and analysts across multiple stages, focusing on Brazilian listed companies. Exploratory factor analysis yielded a refined three-dimensional structure comprising Analyst Disclosure, ESG (environmental, social and governance), and Artificial Intelligence. Findings indicate that investors increasingly regard artificial intelligence as central to evaluating disclosure credibility and informing investment decisions. This research advances disclosure measurement by offering a novel, empirically validated instrument that captures evolving communication dynamics. The proposed scale provides theoretical and practical contributions by strengthening the links between governance, sustainability, and financial transparency, and it establishes a foundation for future cross-market validation in emerging economies.
Downloads
[1] Healy, P. M., & Palepu, K. G. (2001). Information asymmetry, corporate disclosure, and the capital markets: A review of the empirical disclosure literature. Journal of Accounting and Economics, 31(1–3), 405–440. doi:10.1016/S0165-4101(01)00018-0.
[2] Graham, J. R., Harvey, C. R., & Rajgopal, S. (2005). The economic implications of corporate financial reporting. Journal of Accounting and Economics, 40(1–3), 3–73. doi:10.1016/j.jacceco.2005.01.002.
[3] Bushee, B. J., Matsumoto, D. A., & Miller, G. S. (2003). Open versus closed conference calls: The determinants and effects of broadening access to disclosure. Journal of Accounting and Economics, 34(1–3), 149-180. doi:10.1016/S0165-4101(02)00073-3.
[4] Brown, S., Hillegeist, S. A., & Lo, K. (2004). Conference calls and information asymmetry. Journal of Accounting and Economics, 37(3), 343–366. doi:10.1016/j.jacceco.2004.02.001.
[5] Huang, X., Teoh, S. H., & Zhang, Y. (2014). Tone management. Accounting Review, 89(3), 1083–1113. doi:10.2308/accr-50684.
[6] Bochkay, K., Hales, J., & Chava, S. (2020). Hyperbole or reality? Investor response to extreme language in earnings conference calls. Accounting Review, 95(2), 31–60. doi:10.2308/accr-52507.
[7] Bushee, B. J., Gow, I. D., & Taylor, D. J. (2018). Linguistic Complexity in Firm Disclosures: Obfuscation or Information? Journal of Accounting Research, 56(1), 85–121. doi:10.1111/1475-679X.12179.
[8] Todd, A., Bowden, J., Cummins, M., & Su, Y. (2025). A multimodal sentiment classifier for financial decision making. International Review of Financial Analysis, 105. doi:10.1016/j.irfa.2025.104322.
[9] Adetunji Paul Adejumo, & Chinonso Peter Ogburie. (2025). Financial statement manipulation: Ethical and regulatory perspectives. GSC Advanced Research and Reviews, 22(3), 252–264. doi:10.30574/gscarr.2025.22.3.0087.
[10] Frankel, R. (2004). Characteristics of a firm’s information environment and the information asymmetry between insiders and outsiders*1. Journal of Accounting and Economics, 37(2), 229–259. doi:10.1016/s0165-4101(03)00068-5.
[11] Duchin, R., Gao, J., & Xu, Q. (2025). Sustainability or Greenwashing: Evidence from the Asset Market for Industrial Pollution. Journal of Finance, 80(2), 699–754. doi:10.1111/jofi.13412.
[12] Turker, D. (2009). Measuring corporate social responsibility: A scale development study. Journal of Business Ethics, 85(4), 411–427. doi:10.1007/s10551-008-9780-6.
[13] Latif, K. F. (2018). The Development and Validation of Stakeholder-Based Scale for Measuring University Social Responsibility (USR). Social Indicators Research, 140(2), 511–547. doi:10.1007/s11205-017-1794-y.
[14] Jain, J., Walia, N., Kaur, M., & Singh, S. (2022). Behavioural biases affecting investors’ decision-making process: a scale development approach. Management Research Review, 45(8), 1079–1098. doi:10.1108/MRR-02-2021-0139.
[15] Wang, Y. Y., & Chuang, Y. W. (2024). Artificial intelligence self-efficacy: Scale development and validation. Education and Information Technologies, 29(4), 4785–4808. doi:10.1007/s10639-023-12015-w.
[16] Churchill, G. A. (1979). A Paradigm for Developing Better Measures of Marketing Constructs. Journal of Marketing Research, 16(1), 64. doi:10.2307/3150876.
[17] Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing Construct Validity in Organizational Research. Administrative Science Quarterly, 36(3), 421. doi:10.2307/2393203.
[18] U.S. Securities and Exchange Commission. (1999). Selective disclosure and insider trading. U.S. Securities and Exchange Commission, Release No. 34-42259. Available online: https://www.sec.gov/rule-release/34-42259 (accessed on December 2025).
[19] Armstrong, C. S., Guay, W. R., & Weber, J. P. (2010). The role of information and financial reporting in corporate governance and debt contracting. Journal of Accounting and Economics, 50(2–3), 179–234. doi:10.1016/j.jacceco.2010.10.001.
[20] Bushman, R. M., & Smith, A. J. (2001). Financial accounting information and corporate governance. Journal of Accounting and Economics, 32(1–3), 237–333. doi:10.1016/S0165-4101(01)00027-1.
[21] Chen, C. J. P., & Jaggi, B. (2000). Association between independent non-executive directors, family control and financial disclosures in Hong Kong. Journal of Accounting and Public Policy, 19(4–5), 285–310. doi:10.1016/S0278-4254(00)00015-6.
[22] DeVellis, R. F., & Thorpe, C. T. (2022). Scale development: Theory and applications. SAGE Publications, London, United Kingdom.
[23] Netemeyer, R., Bearden, W., & Sharma, S. (2003). Scaling procedures: Issues and applications. SAGE Publications, London, United Kingdom.
[24] Fabrigar, L. R., MacCallum, R. C., Wegener, D. T., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. doi:10.1037/1082-989X.4.3.272.
[25] Worthington, R. L., & Whittaker, T. A. (2006). Scale Development Research: A Content Analysis and Recommendations for Best Practices. The Counseling Psychologist, 34(6), 806–838. doi:10.1177/0011000006288127.
[26] Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in survey questionnaires. Organizational Research Methods, 1(1), 104–121. doi:10.1177/109442819800100106.
[27] Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage Learning, Massachusetts, United States.
[28] Hung, A., Parker, A. M., & Yoong, J. (2011). Defining and Measuring Financial Literacy. SSRN Electronic Journal, 1498674. doi:10.2139/ssrn.1498674.
[29] Hoffmann, A. O. I., Post, T., & Pennings, J. M. E. (2012). How (Changes in) Investor Perceptions Drive Actual Trading and Risk-Taking Behavior. SSRN Electronic Journal, 16(1), 94–103. doi:10.2139/ssrn.1968839.
[30] Hossain, A. T., Masum, A. Al, Hasan, M. M., Li, D., & Xu, J. (2024). The disclosure perspective of firm-specific political risk measure from conference calls. Financial Management, 53(4), 749–793. doi:10.1111/fima.12468.
[31] Arian, A., Sands, J., Rahman, H. U., & Khatatbeh, I. N. (2025). Corporate social performance through instrumental stakeholder theory: a sector-specific perspective. Management Decision, 63(5), 1369–1390. doi:10.1108/MD-11-2023-2108.
[32] Ning, J., Zhang, L., Mi, B., Yang, J. H., & Tao, L. (2025). Signalling through managerial tone and analysts’ response. Accounting Forum, 49(4), 803–829. doi:10.1080/01559982.2024.2339911.
[33] Ishaq, M. I., Raza, A., Bartikowski, B., Sarwar, H., & Zia-ur-Rehman. (2023). Masstige Marketing: A scale development and validity study. Journal of Business Research, 166. doi:10.1016/j.jbusres.2023.114112.
[34] Beck, T., Demirgüç-Kunt, A., & Levine, R. (2000). A new database on the structure and development of the financial sector. World Bank Economic Review, 14(3), 597–605. doi:10.1093/wber/14.3.597.
[35] Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), 879–903. doi:10.1037/0021-9010.88.5.879.
[36] Jungo, J., Madaleno, M., & Botelho, A. (2024). Financial Literacy, Financial Innovation, and Financial Inclusion as Mitigating Factors of the Adverse Effect of Corruption on Banking Stability Indicators. Journal of the Knowledge Economy, 15(2), 8842–8873. doi:10.1007/s13132-023-01442-2.
[37] Grable, J., & Lytton, R. H. (1999). Financial risk tolerance revisited. Financial Services Review, 8(3), 163–181. doi:10.1016/s1057-0810(99)00041-4.
[38] Farrell, L., Fry, T. R. L., & Risse, L. (2016). The significance of financial self-efficacy in explaining women’s personal finance behaviour. Journal of Economic Psychology, 54, 85–99. doi:10.1016/j.joep.2015.07.001.
[39] Cantele, S., Landi, S., & Vernizzi, S. (2024). Measuring corporate sustainability in its multidimensionality: A formative approach to integrate ESG and triple bottom line approaches. Business Strategy and the Environment, 33(7), 7383–7408. doi:10.1002/bse.3872.
[40] Afşar Doğrusöz, L., & Yazıcı, S. (2025). Measuring organisational governance capacity in healthcare organisations: a scale development and validation study. BMC Health Services Research, 25(1), 338. doi:10.1186/s12913-025-12442-0.
[41] Wang, Y., Yu, Y., & Khan, A. (2025). Digital sustainability: Dimension exploration and scale development. Acta Psychologica, 256, 105028. doi:10.1016/j.actpsy.2025.105028.
[42] Hossain, M. I., Heng Teh, B., Chong, L. L., Ong, T. S., Tabash, M. I., & Jamadar, Y. (2024). Corporate shared prosperity: scale development and validation. Cogent Business and Management, 11(1), 2369217. doi:10.1080/23311975.2024.2369217.
[43] Oh, H. J., Lee, B., Ma, H. H., Jang, D., & Park, S. (2024). A preliminary study for developing perceived ESG scale to measure public perception toward organizations’ ESG performance. Public Relations Review, 50(1), 102398. doi:10.1016/j.pubrev.2023.102398.
[44] Beyer, A., Cohen, D. A., Lys, T. Z., & Walther, B. R. (2010). The financial reporting environment: Review of the recent literature. Journal of Accounting and Economics, 50(2–3), 296–343. doi:10.1016/j.jacceco.2010.10.003.
[45] Watts, R. L. (2005). Conservatism in Accounting - Part I: Explanations and Implications. SSRN Electronic Journal. doi:10.2139/ssrn.414522.
[46] Brown, S., Hillegeist, S. A., & Lo, K. (2004). Conference calls and information asymmetry. Journal of Accounting and Economics, 37(3), 343–366. doi:10.1016/j.jacceco.2004.02.001.
[47] Einhorn, E., & Ziv, A. (2008). Intertemporal dynamics of corporate voluntary disclosures. Journal of Accounting Research, 46(3), 567–589. doi:10.1111/j.1475-679X.2008.00284.x.
[48] Healy, P. M., Hutton, A. P., & Palepu, K. G. (1999). Stock Performance and Intermediation Changes Surrounding Sustained Increases in Disclosure. Contemporary Accounting Research, 16(3), 485–520. doi:10.1111/j.1911-3846.1999.tb00592.x.
[49] Dhaliwal, D. S., Li, O. Z., Tsang, A., & Yang, Y. G. (2011). Voluntary nonfinancial disclosure and the cost of equity capital: The initiation of corporate social responsibility reporting. Accounting Review, 86(1), 59–100. doi:10.2308/accr.00000005.
[50] Dhaliwal, D. S., Radhakrishnan, S., Tsang, A., & Yang, Y. G. (2012). Nonfinancial disclosure and analyst forecast accuracy: International evidence on corporate social responsibility disclosure. Accounting Review, 87(3), 723–759. doi:10.2308/accr-10218.
[51] Mayew, W. J., & Venkatachalam, M. (2012). The power of voice: Managerial affective states and future firm performance. Journal of Finance, 67(1), 1–43. doi:10.1111/j.1540-6261.2011.01705.x.
[52] Fiset, J., Oldford, E., & Chu, S. (2021). Market signaling capacity of written and visual charismatic leadership tactics. Journal of Behavioral and Experimental Finance, 29, 100465. doi:10.1016/j.jbef.2021.100465.
[53] Druz, M., Petzev, I., Wagner, A. F., & Zeckhauser, R. J. (2020). When Managers Change Their Tone, Analysts and Investors Change Their Tune. Financial Analysts Journal, 76(2), 47–69. doi:10.1080/0015198X.2019.1707592.
[54] Maia, R., & Bravo, J. M. (2024). Twenty-five years (1998-2023) of Earnings Disclosure with Conference Calls: a Bibliometric Review focusing on Artificial Intelligence. 2024 Mediterranean Conference on Information Systems (MCIS), Porto, Portugal.
[55] Kraus, M., & Feuerriegel, S. (2017). Decision support from financial disclosures with deep neural networks and transfer learning. Decision Support Systems, 104, 38–48. doi:10.1016/j.dss.2017.10.001.
[56] Berkovitch, J., Israeli, D., & Kasznik, R. (2025). Sentiment Management: AI-based Evidence from Earnings Guidance. SSRN Electronic Journal, 5051800. doi:10.2139/ssrn.5051800.
[57] Coelho, P. S., Rita, P., & Santos, Z. R. (2018). On the relationship between consumer-brand identification, brand community, and brand loyalty. Journal of Retailing and Consumer Services, 43, 101–110. doi:10.1016/j.jretconser.2018.03.011.
[58] Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115. doi:10.1111/j.1365-2648.2007.04569.x.
[59] Dye, R. A. (2001). An evaluation of “essays on disclosure” and the disclosure literature in accounting. Journal of Accounting and Economics, 32(1–3), 181–235. doi:10.1016/S0165-4101(01)00024-6.
[60] Kimbrough, M. D. (2005). The effect of conference calls on analyst and market underreaction to earnings announcements. Accounting Review, 80(1), 189–219. doi:10.2308/accr.2005.80.1.189.
[61] Burgstahler, D. C., & Eames, M. J. (2003). Earnings Management to Avoid Losses and Earnings Decreases: Are Analysts Fooled? Contemporary Accounting Research, 20(2), 253–294. doi:10.1506/BXXP-RGTD-H0PM-9XAL.
[62] Bowen, R. M., Davis, A. K., & Matsumoto, D. A. (2002). Do conference calls affect analysts’ forecasts? The Accounting Review, SSRN Electronic Journal, 1-47. doi:10.2139/ssrn.216810.
[63] Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382. doi:10.1037/h0031619.
[64] Bekaerta, G., & Harvey, C. R. (1997). Emerging equity market volatility. Journal of Financial Economics, 43(1), 29–77. doi:10.1016/S0304-405X(96)00889-6.
[65] Hu, Z. (1995). Stock Market Volatility and Corporate Investment. IMF Working Papers. International Monetary Fund, Washington, D.C., United States. doi:10.5089/9781451852585.001.
[66] Bartlett, M. S. (1950). Tests of Significance in Factor Analysis. British Journal of Statistical Psychology, 3(2), 77–85. doi:10.1111/j.2044-8317.1950.tb00285.x.
[67] Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Prentice Hall, New Jersey, United States
[68] Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. McGraw-Hill, Ohio, United States
[69] Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. doi:10.1007/BF02291817.
[70] Martins, H. C. (2022). Competition and ESG practices in emerging markets: Evidence from a difference-in-differences model. Finance Research Letters, 46, 102371. doi:10.1016/j.frl.2021.102371.
[71] Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. Review of Financial Studies, 33(5), 2223–2273. doi:10.1093/rfs/hhaa009.
[72] Van Binsbergen, J. H., Han, X., & Lopez-Lira, A. (2023). Man versus Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases. Review of Financial Studies, 36(6), 2361–2396. doi:10.1093/rfs/hhac085.
[73] Hume AI. (2025). How Markets EQ transformed financial analysis. Hume AI, New York, United States. Available online: https://www.hume.ai/blog/case-study-hume-markets-eq (accessed on December 2025).
[74] Hume AI. (2025). Emotion AI for market prediction. Hume AI, New York, United States. Available online: https://www.hume.ai/blog/case-study-hume-mood-metrics-ai (accessed on December 2025).
[75] CFA Institute. (2020). ESG and the earnings call. Harvard Law School Forum on Corporate Governance. Massachusetts, United States. Available online: https://corpgov.law.harvard.edu/2020/06/17/esg-and-the-earnings-call/ (accessed on December 2025).
[76] PwC. (2021). ESG Investor Survey: The Economic Realities of ESG. PwC’s Global Investor, London, United Kingdom. Available online: https://www.pwc.com/gx/en/services/audit-assurance/corporate-reporting/esg-investor-survey.html (accessed on December 2025).
[77] S&P Global. (2024). To do or not to do ESG on earnings calls? S&P Global Market Intelligence, New York, United States. Available online: https://www.spglobal.com/market-intelligence/en/news-insights/research/to-do-or-not-to-do-esg-on-earnings-calls (accessed on December 2025).
[78] World Bank. (2023). Listed domestic companies, total - Brazil. World Bank Group, Washington, D.C. United States. Available online: https://data.worldbank.org/indicator/CM.MKT.LDOM.NO?locations=BR (accessed on December 2025).
[79] Broedel Lopes, A., & Alencar, R. C. (2011). Disclosure and Cost of Equity Capital in Emerging Markets: The Brazilian Case. SSRN Electronic Journal, 45(4), 443–464. doi:10.2139/ssrn.1099900.
[80] Kline, R. B. (2023). Principles and practice of structural equation modeling. The Guilford Press, New York, United States.
[81] World Bank. (2023). Listed domestic companies, total - United States. World Bank Group, Washington, D.C. United States. Available online: https://data.worldbank.org/indicator/CM.MKT.LDOM.NO?locations=US (accessed on December 2025).
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















