Development of Control and Measurement Procedures for Geometrically Complex Surfaces
Downloads
This study aims to develop and automate control and measurement procedures for parts with complex geometric surfaces under multiproduct manufacturing conditions. By integrating combinatorial analysis, statistical testing, and probe trajectory optimization into a unified framework, the proposed methodology formalizes measurement planning within an automated system. The actual dimensional characteristics of each workpiece are determined at the design stage, enabling the adaptation of the technological process to specific components. Experimental validation was performed on a FARO 9 ARM coordinate measuring machine using six types of complex parts, and statistical testing was performed to identify the optimal number of control points (108) with a minimum measurement time of 72 min per part. The methodology achieved a defect rate reduction of 5% and demonstrated an annual cost savings of 641,172 Rubles. This study integrates control point selection, probe trajectory planning, and measuring instrument choice into a single automated system that adapts to actual workpiece geometry, advancing Metrology 4.0 principles. The proposed approach significantly improves performance compared with conventional methods, reducing metrological preparation time by 76%, lowering defect rates by 50%, and decreasing the number of measurement operations by over 40%. These results confirm the potential of the methodology for enhancing productivity and economic efficiency in digital manufacturing environments.
Downloads
[1] Tang, L., & Meng, Y. (2021). Data analytics and optimization for smart industry. Frontiers of Engineering Management, 8(2), 157–171. doi:10.1007/s42524-020-0126-0.
[2] Almenov, T., Zhanakova, R., Sarybayev, M., & Shabaz, D. M. (2025). A Novel Approach to Selecting Rational Supports for Underground Mining Workings. Civil Engineering Journal (Iran), 11(3), 1217–1241. doi:10.28991/CEJ-2025-011-03-022.
[3] Stojadinovic, S. M., Majstorovic, V. D., Gąska, A., Sładek, J., & Durakbasa, N. M. (2021). Development of a Coordinate Measuring Machine—Based Inspection Planning System for Industry 4.0. Applied Sciences, 11(18), 8411. doi:10.3390/app11188411.
[4] Yang, J., Liu, J., Xie, J., Wang, C., & Ding, T. (2021). Conditional GAN and 2-D CNN for Bearing Fault Diagnosis with Small Samples. IEEE Transactions on Instrumentation and Measurement, 70, 1–12. doi:10.1109/TIM.2021.3119135.
[5] Feng, G., Ziyue, P., Xutao, Z., Yan, L., & Jihao, D. (2021). An adaptive sampling method for accurate measurement of aeroengine blades. Measurement, 173, 108531. doi:10.1016/j.measurement.2020.108531.
[6] Stojadinovic, S. M., Majstorovic, V. D., & Durakbasa, N. M. (2020). Toward a cyber-physical manufacturing metrology model for industry 4.0. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 35(1), 20–36. doi:10.1017/s0890060420000347.
[7] Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 3(5), 616–630. doi:10.1016/J.ENG.2017.05.015.
[8] Guo, P., Zhu, L., Wu, Z., Zhang, W., Huang, N., & Zhang, Y. (2021). Autonomous Profile Tracking for Multiaxis Ultrasonic Measurement of Deformed Surface in Mirror Milling. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. doi:10.1109/TIM.2021.3089244.
[9] Sioma, A. (2020). Automated control of surface defects on ceramic tiles using 3D image analysis. Materials, 13(5), 1250. doi:10.3390/ma13051250.
[10] Zhao, W., Wang, X., & Liu, Y. (2022). Path Planning for 5-Axis CMM Inspection Considering Path Reuse. Machines, 10(11), 973. doi:10.3390/machines10110973.
[11] Yan, Y., He, G., Sang, Y., Yao, C., Wang, S., & Chen, F. (2022). A two-module automated scanning inspection planning methodology for complex surfaces on coordinate measuring machine. Measurement, 202, 111827. doi:10.1016/j.measurement.2022.111827.
[12] Urban, J., Resl, J., Beránek, L., Koptiš, M., & Petrášek, Š. (2024). Optimizing coordinate measuring machine measurement plans: Economic benefits and environmental impact. Journal of Cleaner Production, 477, 143891. doi:10.1016/j.jclepro.2024.143891.
[13] Catalucci, S., Thompson, A., Piano, S., Branson, D. T., & Leach, R. (2022). Optical metrology for digital manufacturing: a review. International Journal of Advanced Manufacturing Technology, 120(7-8), 4271-4290. doi:10.1007/s00170-022-09084-5.
[14] Hall, B. D. (2025). Modelling Metrological Traceability. Metrology, 5(2), 25. doi:10.3390/metrology5020025.
[15] Petukhov, I., Steshina, L., & Glazyrin, A. (2017). Application of virtual reality technologies in training of man-machine system operators. 2017 International Conference on Information Science and Communications Technologies (ICISCT), 1–7. doi:10.1109/icisct.2017.8188569.
[16] Vereschaka, A., Milovich, F., Andreev, N., Sitnikov, N., Alexandrov, I., Muranov, A., Mikhailov, M., & Tatarkanov, A. (2021). Efficiency of application of (Mo, al)n-based coatings with inclusion of Ti, Zr Or Cr during the turning of steel of nickel-based alloy. Coatings, 11(11), 1271. doi:10.3390/coatings11111271.
[17] Tatarkanov, A., Alexandrov, I., Muranov, A., & Lampezhev, A. (2022). Development of a Technique for the Spectral Description of Curves of Complex Shape for Problems of Object Classification. Emerging Science Journal, 6(6), 1455–1475. doi:10.28991/ESJ-2022-06-06-015.
[18] Archenti, A., Gao, W., Donmez, A., Savio, E., & Irino, N. (2024). Integrated metrology for advanced manufacturing. CIRP Annals, 73(2), 639–665. doi:10.1016/j.cirp.2024.05.003.
[19] Mohammad, A., Aljamaan, F., Shuqayr, S. B., & Ahmed, K. M. (2025). Coordinate measuring machine (CMM) performance verification using standard step gauges with new measurement model and modified uncertainty analysis. Measurement: Sensors, 38, 101658. doi:10.1016/j.measen.2024.10165.
[20] Alexandrov, I. A., Mikhailov, M. S., & Chervyakov, L. M. (2024). Methods of Balancing Technological Systems of Multiproduct Production. Applied System Innovation, 7(6), 114. doi:10.3390/asi7060114.
[21] Królczyk, G., Kacalak, W., & Wieczorowski, M. (2021). 3D Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes. Materials, 14(8), 1987. doi:10.3390/ma14081987.
[22] Liu, Y., Zhao, W., Sun, R., & Yue, X. (2020). Optimal path planning for automated dimensional inspection of free-form surfaces. Journal of Manufacturing Systems, 56, 84–92. doi:10.1016/j.jmsy.2020.05.008.
[23] Anagnostakis, D., Ritchie, J., Lim, T., Sung, R., & Dewar, R. (2018). Automated coordinate measuring machine inspection planning knowledge capture and formalization. Journal of Computing and Information Science in Engineering, 18(3), 031005. doi:10.1115/1.4039194.
[24] Abdulhameed, O., Al-Ahmari, A., Mian, S. H., & Aboudaif, M. K. (2020). Path planning and setup orientation for automated dimensional inspection using coordinate measuring machines. Mathematical Problems in Engineering, 2020, 1–17. doi:10.1155/2020/9683074.
[25] Qu, L., Xu, G., & Wang, G. (1998). Optimization of the measuring path on a coordinate measuring machine using genetic algorithms. Measurement, 23(3), 159–170. doi:10.1016/s0263-2241(98)00023-2.
[26] Magklaras, A., Alefragis, P., Gogos, C., Valouxis, C., & Birbas, A. (2023). A Genetic Algorithm-Enhanced Sensor Marks Selection Algorithm for Wavefront Aberration Modeling in Extreme-UV (EUV) Photolithography. Information (Switzerland), 14(8), 428. doi:10.3390/info14080428.
[27] Zhou, A., Guo, J., & Shao, W. (2011). Automated inspection planning of freeform surfaces for manufacturing applications. 2011 IEEE International Conference on Mechatronics and Automation, 2264–2269. doi:10.1109/icma.2011.5986292.
[28] Palomino Ojeda, J. M., Quiñones Huatangari, L., Cayatopa Calderon, B. A., Piedra Tineo, J. L., Apaza Panca, C. Z., & Milla Pino, M. E. (2024). Estimation of the Physical Progress of Work Using UAV and BIM in Construction Projects. Civil Engineering Journal, 10(2), 362–383. doi:10.28991/CEJ-2024-010-02-02.
[29] Leo Kumar, S. P. (2019). Knowledge-based expert system in manufacturing planning: state-of-the-art review. International Journal of Production Research, 57(15–16), 4766–4790. doi:10.1080/00207543.2018.1424372.
[30] Zhu, D., Feng, X., Xu, X., Yang, Z., Li, W., Yan, S., & Ding, H. (2020). Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing, 65, 101908. doi:10.1016/j.rcim.2019.101908.
[31] Pappas, A., Newton, L., Thompson, A., & Leach, R. (2023). Review of material measures for surface topography instrument calibration and performance verification. Measurement Science and Technology, 35(1), 012001. doi:10.1088/1361-6501/acf1b9.
[32] Townsend, A., Senin, N., Blunt, L., Leach, R. K., & Taylor, J. S. (2016). Surface texture metrology for metal additive manufacturing: a review. Precision Engineering, 46, 34–47. doi:10.1016/j.precisioneng.2016.06.001.
[33] Sushil, K., Ramkumar, J., & Chandraprakash, C. (2025). Surface roughness analysis: A comprehensive review of measurement techniques, methodologies, and modeling. Journal of Micromanufacturing. doi:10.1177/25165984241305225.
[34] Tao, C., Chunhui, L., Hui, X., Zhiheng, Z., & Guangyue, W. (2023). A review of digital twin intelligent assembly technology and application for complex mechanical products. International Journal of Advanced Manufacturing Technology, 127(9–10), 4013–4033. doi:10.1007/s00170-023-11823-1.
[35] Krolczyk, G. M., Maruda, R. W., Krolczyk, J. B., Nieslony, P., Wojciechowski, S., & Legutko, S. (2018). Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement, 121, 225–239. doi:10.1016/j.measurement.2018.02.052.
[36] Wang, A., & Wang, H. (2021). Survey on stochastic distribution systems: A full probability density function control theory with potential applications. Optimal Control Applications and Methods, 42(6), 1812–1839. doi:10.1002/oca.2755.
[37] Kolocheva, V.V., Boridko, N.V. (2024). Methodology for Assessing the Competitiveness of Metal-Cutting Tools. Ecological Footprint of the Modern Economy and the Ways to Reduce It, Advances in Science, Technology & Innovation, Springer, Cham, Switzerland. doi:10.1007/978-3-031-49711-7_42.
[38] Magdziak, M. (2022). Estimating Time of Coordinate Measurements Based on the Adopted Measurement Strategy. Sensors, 22(19), 7310. doi:10.3390/s22197310.
[39] Shai, O., & Rubin, D. (2004). Representing and analysing integrated engineering systems through combinatorial representations. Engineering with Computers, 19(4), 221–232. doi:10.1007/s00366-003-0262-2.
[40] Zanini, F., Pagani, L., Savio, E., & Carmignato, S. (2019). Characterisation of additively manufactured metal surfaces by means of X-ray computed tomography and generalised surface texture parameters. CIRP Annals, 68(1), 515–518. doi:10.1016/j.cirp.2019.04.074.
[41] Qian, F., Zhong, W., & Du, W. (2017). Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry. Engineering, 3(2), 154–160. doi:10.1016/J.ENG.2017.02.011.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















