Confidence Intervals for the Coefficient of Quartile Variation of a Zero-inflated Lognormal Distribution
Abstract
Full Text: PDF
Keywords
References
Pennington, Michael. “Efficient Estimators of Abundance, for Fish and Plankton Surveys.” Biometrics 39, no. 1 (March 1983): 281. doi:10.2307/2530830.
Syrjala, S. “Critique on the Use of the Delta Distribution for the Analysis of Trawl Survey Data.” ICES Journal of Marine Science 57, no. 4 (August 2000): 831–842. doi:10.1006/jmsc.2000.0571.
Terceiro, M. “The statistical properties of recreational catch rate data for some fish stocks off the northeast U.S. coast.” Fishery Bulletin 101, no. 3 (Apr 2003): 653-672.
Fletcher, D. “Confidence intervals for the mean of the delta-lognormal distribution.” Environmental and Ecological Statistics 15, no. 2 (Jun 2008): 175-189. doi:10.1007/s10651-007-0046-8.
Wu, W.-H., and H.-N. Hsieh. “Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data.” Journal of Applied Statistics 41, no. 7 (Jan 2014): 1471-1485. doi:10.1080/02664763.2014.881780.
Verrill, S., and R. A. Johnson. “Confidence bounds and hypothesis tests for normal distribution coefficients of variation.” Communications in Statistics - Theory and Methods 36, no. 12 (Aug 2007): 2187-2206. doi:10.1080/03610920701215126.
Mahmoudvand, R., and H. Hassani. “Two new confidence intervals for the coefficient of variation in a normal distribution.” Journal of Applied Statistics 36 no. 4 (Apr 2009): 429-442. doi:10.1080/02664760802474249.
Hayter, A. J. “Confidence bounds on the coefficient of variation of a normal distribution with applications to win-probabilities.” Journal of Statistical Computation and Simulation 85, no. 18 (Apr 2015): 3778-3791. doi:10.1080/00949655.2015.1035654.
Bonett, Douglas G. “Confidence Interval for a Coefficient of Quartile Variation.” Computational Statistics & Data Analysis 50, no. 11 (July 2006): 2953–2957. doi:10.1016/j.csda.2005.05.007.
Altunkaynak, B., and H. Gamgam. “Bootstrap confidence intervals for the coefficient of quartile variation.” Communications in Statistics - Simulation and Computation 48, no. 7 (2019): 2138-2146. doi:10.1080/03610918.2018.1435800.
Krishnamoorthy, K., and T. Mathew. “Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals.” Journal of Statistical Planning and Inference 115, no. 1 (Jul 2003): 103-121. doi:10.1016/S0378-3758(02)00153-2.
Hannig, J., H. Iyer, and P. Patterson. “Fiducial generalized confidence intervals.” Journal of the American Statistical Association 101 no. 473 (Mar 2006): 254-269. doi:10.1198/016214505000000736.
Lin, S. H., and R. S. Wang. “Modified method on the means for several log-normal distributions.” Journal of Applied Statistics 40, no. 1 (Jan 2013): 194-208. doi:10.1080/02664763.2012.740622.
Nam, J., and D. Kwon. “Inference on the ratio of two coefficients of variation of two lognormal distributions.” Communications in Statistics - Theory and Methods 46, no. 17 (May 2016):8575-8587. doi:10.1080/03610926.2016.1185118.
Hasan, Md Sazib, and K. Krishnamoorthy. “Improved Confidence Intervals for the Ratio of Coefficients of Variation of Two Lognormal Distributions.” Journal of Statistical Theory and Applications 16, no. 3 (September 2017): 345. doi:10.2991/jsta.2017.16.3.6.
Thangjai, W., and S.-A. Niwitpong. “Confidence intervals for the signal-to-noise ratio and difference of signal-to-noise ratios of log-normal distributions.” Stats 2, no. 1 (Feb 2019): 164-173. doi:10.3390/stats2010012.
Thangjai, Warisa, Sa-Aat Niwitpong, and Suparat Niwitpong. “Bayesian Confidence Intervals for Coefficients of Variation of PM10 Dispersion.” Emerging Science Journal 5, no. 2 (April 1, 2021): 139–154. doi:10.28991/esj-2021-01264.
Callahan, C. M., J. G. Kesterson, and W. M. Tierney. “Association of symptoms of depression with diagnostic test charges among older adults.” Annals of Internal Medicine 126, no. 6 (Mar 1997): 426-432. doi:10.7326/0003-4819-126-6-199703150-00002.
Owen, W. J., and T. A. DeRouen. “Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants.” Biometrics 36 no. 4 (Dec 1980): 707-719. doi:10.2307/2556125.
Lo, N. C., L. D. Jacobson, and J. L. Squire. “Indices of relative abundance from fish spotter data based on delta-lognornial models.” Canadian Journal of Fisheries and Aquatic Sciences 49 (Dec 1992): 2515-2526. doi:10.1139/f92-278.
Yosboonruang, N., S.-A. Niwitpong, and S. Niwitpong. “Measuring the dispersion of rainfall using Bayesian confidence intervals for coefficient of variation of delta-lognormal distribution: a study from Thailand.” PeerJ 7 (Jul 2019): e7344. doi:10.7717/peerj.7344.
Maneerat, P., S.-A. Niwitpong, and S. Niwitpong “Bayesian confidence intervals for a single mean and the difference between two means of delta-lognormal distributions.” Communications in Statistics - Simulation and Computation (May 2019). doi:10.1080/03610918.2019.1616095.
Zhou, X. H., and W. Tu. “Confidence intervals for the mean of diagnostic test charge data containing zeros.” Biometrics 56 no. 4 (Dec 2000): 1118-1125. doi:10.1111/j.0006-341x.2000.01118.x.
Tian, L. “Inferences on the common coefficient of variation.” Statistics in Medicine 24, no. 14 (Apr 2005): 2213-2210. doi:10.1002/sim.2088.
Tian, L., and J. Wu. “Confidence intervals for the mean of lognormal data with excess zeros.” Biometrical Journal 48, no. 1 (Feb 2006): 149-156. doi:10.1002/bimj.200510155.
Li, X., X. Zhou, and L. Tian. “Interval estimation for the mean of lognormal data with excess zeros.” Statistics & Probability Letters 83, no. 11 (Nov 2013): 2447-2453. doi:10.1016/j.spl.2013.07.004.
Hasan, M. S., and K. Krishnamoorthy. “Confidence intervals for the mean and a percentile based on zero-inflated lognormal data.” Journal of Statistical Computation and Simulation 88, no. 8 (Feb 2018): 1499-1514. doi:10.1080/00949655.2018.1439033.
Maneerat, P., S.-A. Niwitpong, and S. Niwitpong. “A Bayesian approach to construct confidence intervals for comparing the rainfall dispersion in Thailand.” PeerJ 8 (Aug 2020): e8502. doi:10.7717/peerj.8502.
Maneerat, P., S.-A. Niwitpong, and S. Niwitpong. “Bayesian confidence intervals for the difference between variances of delta-lognormal distributions.” Biometrical Journal 62, no. 7 (Jun 2020): 1769-1790. doi:10.1002/bimj.201900079.
Yosboonruang, N., S.-A. Niwitpong, and S. Niwitpong. “The Bayesian confidence intervals for measuring the difference between dispersions of rainfall in Thailand.” PeerJ 8 (Aug 2020): e9662. doi:10.7717/peerj.9662.
Aitchison, John. “On the Distribution of a Positive Random Variable Having a Discrete Probability Mass at the Origin.” Journal of the American Statistical Association 50, no. 271 (September 1955): 901–908. doi:10.1080/01621459.1955.10501976.
Fisher, R. A. “Inverse Probability.” Mathematical Proceedings of the Cambridge Philosophical Society 26, no. 4 (October 1930): 528–535. doi:10.1017/s0305004100016297.
Hannig, J. “On generalized fiducial inference.” Statistica Sinica 19, no. 2 (Apr 2009): 491-544.
Harvey, J., and A. J. van der Merwe. “Bayesian confidence intervals for means and variances of lognormal and bivariate lognormal distributions.” Journal of Statistical Planning and Inference 142, no. 6 (Jun 2012): 1294-1309. doi:10.1016/j.jspi.2011.12.006.
Bolstad, William M., and James M. Curran. “Introduction to Bayesian Statistics, Third Edition” (August 25, 2016). doi:10.1002/9781118593165.
Kalkur, T. A., and A. Rao. “Bayes estimator for coefficient of variation and inverse coefficient of variation for the normal distribution.” International Journal of Statistics and Systems 12, no. 6 (2017): 721-732.
DOI: 10.28991/esj-2021-01289
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Noppadon Yosboonruang, Sa-Aat Niwitpong