Social Network Evolution: The Case of UK Companies Before and After Brexit
Abstract
Doi: 10.28991/ESJ-2022-06-01-01
Full Text: PDF
Keywords
References
Tetlow, G., & Stojanovic, A. (2018). Understanding the economic impact of Brexit. Institute for government, 2-76.
Dhingra, S., Ottaviano, G., Sampson, T., & Van Reenen, J. (2016). The impact of Brexit on foreign investment in the UK. BREXIT 2016, 24(2), 1-10.
Fan, Y., Stevenson, M., & Li, F. (2020). Supplier-initiating risk management behaviour and supply-side resilience: the effects of interpersonal relationships and dependence asymmetry in buyer-supplier relationships. International Journal of Operations and Production Management, 40(7–8), 971–995. doi:10.1108/IJOPM-06-2019-0497.
Mills, C. W., & Wolfe, A. (2000). The Power Elite (Vol. 20). Oxford University Press.
Palmer, D., Friedland, R., & Singh, J. V. (1986). The Ties That Bind: Organizational and Class Bases of Stability in a Corporate Interlock Network. American Sociological Review, 51(6), 781. doi:10.2307/2095367.
Withers, M., Youn (Rose) Kim, J., & Howard, M. (2018). The evolution of the board interlock network following Sarbanes-Oxley. Social Networks, 52, 56–67. doi:10.1016/j.socnet.2017.05.005.
Davis, G. F. (1991). Agents without Principles? The Spread of the Poison Pill through the Intercorporate Network. Administrative Science Quarterly, 36(4), 583. doi:10.2307/2393275.
Haunschild, P. R. (1994). How Much is That Company Worth?: Interorganizational Relationships, Uncertainty, and Acquisition Premiums. Administrative Science Quarterly, 39(3), 391. doi:10.2307/2393296.
Haunschild, P. R., & Beckman, C. M. (1998). When do interlocks matter?: Alternate sources of information and interlock influence. Administrative Science Quarterly, 43(4), 815–844. doi:10.2307/2393617.
Hernandez, E., Sanders, W. G., & Tuschke, A. (2015). Network defense: Pruning, grafting, and closing to prevent leakage of strategic knowledge to rivals. Academy of Management Journal, 58(4), 1233–1260. doi:10.5465/amj.2012.0773.
Lang, J. R., & Lockhart, D. E. (1990). Increased Environmental Uncertainty and Changes in Board Linkage Patterns. Academy of Management Journal, 33(1), 106–128. doi:10.5465/256354.
Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: Effects on ideation and problem finding and solving in an industrial research organization. Organizational Behavior and Human Performance, 30(1), 41–70. doi:10.1016/0030-5073(82)90233-1.
Marsden, P. V. (1990). Network Data and Measurement. In: Annual Review of Sociology, 16, 1990, S. 435-463. Annual Review of Sociology, 435–463,.
Farine, D. R. (2018). When to choose dynamic vs. static social network analysis. Journal of Animal Ecology, 87(1), 128–138. doi:10.1111/1365-2656.12764.
Shahgholian, A., Theodoulidis, B., & Bansal, U. (2012). Social network evolution: A case study of UK directors. Proceedings - 2012 3rd International Conference on Services in Emerging Markets, ICSEM 2012, 107–114. doi:10.1109/ICSEM.2012.22.
Kossinets, G., & Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311(5757), 88–90. doi:10.1126/science.1116869.
Bloom, N., Bunn, P., Chen, S., Mizen, P., Smietanka, P., & Thwaites, G. (2019). The Impact of Brexit on UK Firms. doi:10.3386/w26218.
Kee, H. L., & Nicita, A. (2017). Short-Term Impact of Brexit on the United Kingdom’s Export of Goods. Short-Term Impact of Brexit on the United Kingdom’s Export of Goods. doi:10.1596/1813-9450-8195.
Ramiah, V., Pham, H. N. A., & Moosa, I. (2017). The sectoral effects of Brexit on the British economy: early evidence from the reaction of the stock market. Applied Economics, 49(26), 2508–2514. doi:10.1080/00036846.2016.1240352.
Davis, G. F., Yoo, M., & Baker, W. E. (2003). The Small World of the American Corporate Elite, 1982-2001. Strategic Organization, 1(3), 301–326. doi:10.1177/14761270030013002.
Martin, G., Gözübüyük, R., & Becerra, M. (2015). Interlocks and firm performance: The role of uncertainty in the directorate interlock-performance relationship. Strategic Management Journal, 36(2), 235–253. doi:10.1002/smj.2216.
G. S. Becker, (2009). Human capital: A theoretical and empirical analysis, with special reference to education. University of Chicago Press.
Hillman, A. J. (2005). Politicians on the board of directors: Do connections affect the bottom line? Journal of Management, 31(3), 464–481. doi:10.1177/0149206304272187.
Pfeffer, J., & Salancik, G. R. (2003). The external control of organizations: A resource dependence perspective. Stanford University Press.
Coleman, J. S. (2009). Social capital in the creation of human capital. Knowledge and Social Capital, 94, 17–42. doi:10.1086/228943.
Lin, N. (1999). Social networks and status attainment. Annual Review of Sociology, 25(1), 467–487. doi:10.1146/annurev.soc.25.1.467.
Mizruchi, M. S. (1996). What do interlocks do? An Analysis, Critique, and Assessment of Research on Interlocking Directorates. Annual Review of Sociology, 22(1), 271–298. doi:10.1146/annurev.soc.22.1.271.
Deloitte. "Leaving the E.U.: What will it mean for banking and the financial services industry?" Available online: https://www2.deloitte.com/content/dam/Deloitte/cy/Documents/financial-services/CY_FinancialServices_Brexit_Noexp.pdf (accessed on August 2020).
Persico, V., Pescapé, A., Picariello, A., & Sperlí, G. (2018). Benchmarking big data architectures for social networks data processing using public cloud platforms. Future Generation Computer Systems, 89, 98–109. doi:10.1016/j.future.2018.05.068.
Bourigault, S., Lamprier, S., & Gallinari, P. (2016). Representation learning for information diffusion through social networks: An embedded cascade model. WSDM 2016 - Proceedings of the 9th ACM International Conference on Web Search and Data Mining, 573–582. doi:10.1145/2835776.2835817.
Kim, J., & Mohaisen, A. (2017). Distributed and reliable decision-making for cloud-enabled mobile service platforms. International Journal of Distributed Sensor Networks, 13(8), 1–9. doi:10.1177/1550147717726509.
Jheng, G. Y., Chen, Y. C., & Liang, H. M. (2021). Evolution pattern mining on dynamic social network. Journal of Supercomputing, 77(7), 6979–6991. doi:10.1007/s11227-020-03534-1.
Alberti, F. G., Belfanti, F., & Giusti, J. D. (2021). Knowledge exchange and innovation in clusters: a dynamic social network analysis. Industry and Innovation, 28(7), 880–901. doi:10.1080/13662716.2021.1904840.
Song, H. J., Lee, S., & Kang, K. H. (2021). The influence of board interlocks on firm performance: In the context of geographic diversification in the restaurant industry. Tourism Management, 83, 104238. doi:10.1016/j.tourman.2020.104238.
Lu, J., Yu, D., Mahmoudian, F., Nazari, J. A., & Herremans, I. M. (2021). Board interlocks and greenhouse gas emissions. Business Strategy and the Environment, 30(1), 92–108. doi:10.1002/bse.2611.
Li, M. (2021). Exploring novel technologies through board interlocks: Spillover vs. broad exploration. Research Policy, 50(9), 104337. doi:10.1016/j.respol.2021.104337.
Valeeva, D., Heemskerk, E. M., & Takes, F. W. (2020). The duality of firms and directors in board interlock networks: A relational event modeling approach. Social Networks, 62, 68–79. doi:10.1016/j.socnet.2020.02.009.
Zona, F., Gomez-Mejia, L. R., & Withers, M. C. (2018). Board Interlocks and Firm Performance: Toward a Combined Agency–Resource Dependence Perspective. Journal of Management, 44(2), 589–618. doi:10.1177/0149206315579512.
Kurt, Y., & Kurt, M. (2020). Social network analysis in international business research: An assessment of the current state of play and future research directions. International Business Review, 29(2), 101633. doi:10.1016/j.ibusrev.2019.101633.
DOI: 10.28991/ESJ-2022-06-01-01
Refbacks
- There are currently no refbacks.