Hybrid Controller based on Null Space and Consensus Algorithms for Mobile Robot Formation

Gabriela M. Andaluz, Paulo Leica, Marco Herrera, Luis Morales, Oscar Camacho


This work presents a novel hybrid control approach based on null space and consensus algorithms to solve the scalability problems of mobile robot formation and improve leader control through multiple control objectives. In previous works, the training of robots based on the null space requires a rigid training structure based on a geometric shape, which increases the number of agents in the formation. The scheme of the control algorithm, which does not make formation scalability possible, must be changed; therefore, seeking the scalability of training based on null space is a challenge that could be solved with the inclusion of consensus algorithms, which allow the control structure to be maintained despite increasing or decreasing the number of robot followers. Another advantage of this proposal is that the formation of the followers does not depend on any geometric figure compared to previous works based on the null space; this new proposal does not present singularities as if the structure is based on geometric shape, the latter one is crucial since the formation of agents can take forms that cannot be achieved with a geometric structure, such as collinear locations, that can occur in many environments. The proposed hybrid control approach presents three tasks: i) leader position task, ii) leader shape task, and iii) follower formation task. The proposed algorithm is validated through simulations, performing tests that use the kinematic model of non-holonomic mobile robots. In addition, linear algebra and Lyapunov theory are used to analyze the stability of the method.


Doi: 10.28991/ESJ-2022-06-03-01

Full Text: PDF


Consensus Algorithms; Distributed Control Algorithms; Null-Space; Mobile Robots; Formation Scalability.


Tanner, H. G., Pappas, G. J., & Kumar, V. (2004). Leader-to-formation stability. IEEE Transactions on robotics and automation, 20(3), 443-455. doi: 10.1109/TRA.2004.825275.

Oh, K. K., Park, M. C., & Ahn, H. S. (2015). A survey of multi-agent formation control. Automatica, 53, 424–440. doi:10.1016/j.automatica.2014.10.022.

Claret, J.-A. (2019). The Robot Null Space: New Uses for New Robotic Systems. PhD Dissertation, Technical university of Catalonia Barcelona tech, Barcelona, Spain.

Martinez, J. B., Becerra, H. M., & Gomez-Gutierrez, D. (2021). Formation tracking control and obstacle avoidance of unicycle-type robots guaranteeing continuous velocities. Sensors, 21(13), 4374. doi:10.3390/s21134374.

Rashid, M. Z. A., Yakub, F., Zaki, S. A., Ali, M. S. M., Mamat, N. M., Mohd Putra, S. M. S., Roslan, S. A., Shah, H. N. M., & Aras, M. S. M. (2019). Comprehensive review on controller for leader-follower robotic system. Indian Journal of Geo-Marine Sciences, 48(7), 985–1007.

Saradagi, A., Muralidharan, V., Krishnan, V., Menta, S., & Mahindrakar, A. D. (2018). Formation Control and Trajectory Tracking of Nonholonomic Mobile Robots. IEEE Transactions on Control Systems Technology, 26(6), 2250–2258. doi:10.1109/TCST.2017.2749563.

Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008). The null-space-based behavioral control for autonomous robotic systems. Intelligent Service Robotics, 1(1), 27–39. doi:10.1007/s11370-007-0002-3.

Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Transactions on Control Systems Technology, 17(5), 1173–1182. doi:10.1109/TCST.2008.2004447.

Rosales, C., Leica, P., Sarcinelli-Filho, M., Scaglia, G., & Carelli, R. (2016). 3D Formation Control of Autonomous Vehicles Based on Null-Space. Journal of Intelligent and Robotic Systems: Theory and Applications, 84(1–4), 453–467. doi:10.1007/s10846-015-0329-5.

Trujillo, M. A., Becerra, H. M., Gómez-Gutiérrez, D., Ruiz-León, J., & Ramírez-Treviño, A. (2018). Priority Task-Based Formation Control and Obstacle Avoidance of Holonomic Agents with Continuous Control Inputs. IFAC-PapersOnLine, 51(13), 216–222. doi:10.1016/j.ifacol.2018.07.281.

Leica, P., Herrera, M., Rosales, C., Roberti, F., Toibero, J., & Carelli, R. (2018). Dynamic obstacle avoidance based on time-variation of a potential field for robots formation. IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, Salinas, Ecuador, 1–6. doi:10.1109/ETCM.2017.8247493.

Arevalo, B., Cruz, P. J., & Leica, P. (2018). Sliding mode formation control of mobile robots with input delays. IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, Salinas, Ecuador, 1–6. doi:10.1109/ETCM.2017.8247448.

Fan, J., Liao, Y., Li, Y., Jiang, Q., Wang, L., & Jiang, W. (2019). Formation Control of Multiple Unmanned Surface Vehicles Using the Adaptive Null-Space-Based Behavioral Method. IEEE Access, 7, 87647–87657. doi:10.1109/ACCESS.2019.2925466.

Camacho, O., Leica, P., Antamba, J., & Quinonez, J. (2019). Null-Space Based Control Applied to a Formation of Aerial Manipulators in Congested Environment. Proceedings - 2019 International Conference on Information Systems and Computer Science, INCISCOS 2019, Quito, Ecuador, 244–250. doi:10.1109/INCISCOS49368.2019.00046.

Moreira, M. S. M., Brandao, A. S., & Sarcinelli-Filho, M. (2019). Null space based formation control for a UAV landing on a UGV. 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019, Atlanta, United States, 1389–1397. doi:10.1109/ICUAS.2019.8797820.

Samaniego, P., Vaca, E., Leica, P., Chavez, D., & Camacho, O. (2018). Dynamic obstacle avoidance based on null-space for quadcopter’s formation. IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, Salinas, Ecuador, 1–6. doi:10.1109/ETCM.2017.8247532.

Vaca, E., Samaniego, P., Cruz, P. J., & Leica, P. (2019). Null-Space based Robust Controller for Quadcopter’s formation in windy environments. Proceedings - 3rd IEEE International Conference on Robotic Computing, IRC 2019, Naples, Italy, 643–649. doi:10.1109/IRC.2019.00131.

Bacheti, V. P., Brandão, A. S., & Sarcinelli-Filho, M. (2021). Path-following by a UGV-UAV formation based on null space. 2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings, Sao Paulo, Brazil, 1266–1273. doi:10.1109/INDUSCON51756.2021.9529472.

Neto, V. E., Sarcinelli-Filho, M., & Brandao, A. S. (2019). Trajectory-tracking of a heterogeneous formation using null space-based control. 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019, Atlanta, United States, 187–195. doi:10.1109/ICUAS.2019.8798031.

Huang, Y. C., Shen, J. T., Chiang, M. L., Chen, Y. W., Chua, T. L., & Fu, L. C. (2019). Dual Null-Space Based Controller Design with Signal Compensation for Formation with Conflicted Tasks. CCTA 2019 - 3rd IEEE Conference on Control Technology and Applications, City University of Hong Kong, Hong Kong, China, 958–963. doi:10.1109/CCTA.2019.8920433.

Zhou, N., Cheng, X., Xia, Y., & Liu, Y. (2020). Distributed Formation Control of Multi-Robot Systems: A Fixed-Time Behavioral Approach. 59th IEEE Conference on Decision and Control, CDC 2020, Jeju Island, South Korea, 4017–4022. doi:10.1109/CDC42340.2020.9304057.

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233. doi:10.1109/JPROC.2006.887293.

Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control: Theory and applications. Communications and Control Engineering, London, United Kingdom. doi: 10.1007/978-1-84800-015-5.

Ren, W., & Cao, Y. (2011). Distributed coordination of multi-agent networks: Emergent problems, models, and issues. In Communications and Control Engineering, Springer, London, United Kingdom. doi:10.1007/978-0-85729-169-1.

Zhang, H., Zhao, Z., Meng, Z., & Lin, Z. (2014). Experimental verification of a multi-robot distributed control algorithm with containment and group dispersion behaviors: The case of dynamic leaders. IEEE/CAA Journal of Automatica Sinica, 1(1), 54–60. doi:10.1109/JAS.2014.7004620.

Cao, Y., Stuart, D., Ren, W., & Meng, Z. (2010). Distributed containment control for double-integrator dynamics: Algorithms and experiments. Proceedings of the 2010 American Control Conference, Baltimore, United States, 3830-3835.

Cao, Y., Ren, W., & Egerstedt, M. (2012). Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica, 48(8), 1586–1597. doi:10.1016/j.automatica.2012.05.071.

Vizuete, R., Abad Torres, J., Leica, P. (2020). Application of a Distributed Containment Algorithm: Trajectory Tracking for Mobile Robots. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham, Switzerland. doi: 10.1007/978-3-030-11292-9_11.

Peng, H., Wang, J., Wang, S., Shen, W., Shi, D., & Liu, D. (2020). Coordinated Motion Control for a Wheel-Leg Robot with Speed Consensus Strategy. IEEE/ASME Transactions on Mechatronics, 25(3), 1366–1376. doi:10.1109/TMECH.2020.2975083.

Koung, D., Fantoni, I., Kermorgant, O., & Belouaer, L. (2020). Consensus-based formation control and obstacle avoidance for nonholonomic multi-robot system. 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, Shenzhen, China, 92–97. doi:10.1109/ICARCV50220.2020.9305426.

Wang, N., Dai, J., & Ying, J. (2021). Research on Consensus of UAV Formation Trajectory Planning Based on Improved Potential Field. 40th Chinese Control Conference, CCC, Shanghai, China, 99–104. doi:10.23919/CCC52363.2021.9550138.

Xu, Y., Yao, F., & Chai, S. (2020). Distributed Formation Control for Multiple Quadrotor System Based on Consensus Algorithm. 39th Chinese Control Conference, CCC, 2020-July, Shenyang, China, 4872–4877. doi:10.23919/CCC50068.2020.9189136.

Wu, F., He, J., Zhou, G., Li, H., & Liu, Y. (2021). Performance of Sliding Mode and Consensus-based Control Approaches for Quadrotor Leader-Follower Formation Flight. 2021 International Conference on Unmanned Aircraft Systems, ICUAS 2021, Athens, Greece, 1671–1676. doi:10.1109/ICUAS51884.2021.9476782.

Kada, B., Khalid, M., & Shaikh, M. S. (2020). Distributed cooperative control of autonomous multi-Agent UAV systems using smooth control. Journal of Systems Engineering and Electronics, 31(6), 1297–1307. doi:10.23919/JSEE.2020.000100.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-03-01


  • There are currently no refbacks.

Copyright (c) 2022 Oscar Camacho