Soliton-like Solution on the Dynamics of Modified Peyrard-Bishop DNA Model in the Thermostat as a Bio-Fluid

T. E. P. Sutantyo, A. Ripai, Z. Abdullah, W. Hidayat, Freddy P. Zen


The Peyrard-Bishop (PB) DNA model is the most representative model to investigate DNA dynamics because the model is able to answer DNA denaturation processes even though the model has restricted review that DNA assumes without surrounding interaction. In this study, we investigate the dynamics of the modified PB DNA model by considering DNA in the Nosé-Hoover thermostat as a bio-fluid with various viscosities. Viscosity variations are reviewed through temperature variations, namely thermal viscosity. We attain the dynamical equation of DNA in the form of a nonlinear Schrödinger-like (NLS-like) equation by using the perturbation method and continuous approximation. We solve the NLS-like equations by the numerical split-step Fourier method. We obtain a soliton-like solution for the dynamics of this specific DNA model. The behavior of the soliton-like solution fluctuates as the temperature increases, representing the fluctuational openings of DNA, i.e., denaturation bubbles. In addition, that behavior also evolves with variations of the perturbation parameter. Moreover, we obtain soliton-like solutions by balancing the perturbation and the nonlinearity of the DNA system from the bio-fluid interaction. Furthermore, for the specific thermal viscosity of bio-fluid, we gain the denaturation temperature at 370 K ≤ T ≤ 380 K.


Doi: 10.28991/ESJ-2022-06-04-01

Full Text: PDF


Soliton-like Solutions; NLS-like Equation; Peyrard-Bishop DNA Model; Nosé-Hoover Thermostat; DNA Denaturation.


Lamm, E., Harman, O., & Veigl, S. J. (2020). Before watson and crick in 1953 came friedrich miescher in 1869. Genetics, 215(2), 291–296. doi:10.1534/genetics.120.303195.

Sutantyo, T. E. P., Dwiputra, D., Hidayat, W., & Zen, F. P. (2019). Chaotic Behaviour of Modified Hamiltonian Peyrard-Bishop-Dauxois Model on DNA System. Journal of Physics: Conference Series, 1245(1), 012070. doi:10.1088/1742-6596/1245/1/012070.

Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122(6), 565–581. doi:10.1007/s00439-007-0433-0.

Pray, L. (2008). Discovery of DNA structure and function: Watson and Crick. Nature Education, 1(1). Available online: (accessed on May 2022).

Alexandrov, B., Voulgarakis, N. K., Rasmussen, K. Ø., Usheva, A., & Bishop, A. R. (2008). Pre-melting dynamics of DNA and its relation to specific functions. Journal of Physics: Condensed Matter, 21(3), 034107. doi:10.1088/0953-8984/21/3/034107.

Calvo, G. F., & Alvarez-Estrada, R. F. (2005). Three-dimensional models for homogeneous DNA near denaturation. Journal of Physics Condensed Matter, 17(50), 7755. doi:10.1088/0953-8984/17/50/001.

Tabi, C. B., Mohamadou, A., & Kofané, T. C. (2008). Soliton excitation in the DNA double helix. Physica Scripta, 77(4), 045002. doi:10.1088/0031-8949/77/4/045002.

Metzler, R., Ambjörnsson, T., Hanke, A., & Fogedby, H. C. (2008). Single DNA denaturation and bubble dynamics. Journal of Physics: Condensed Matter, 21(3), 034111. doi:10.1088/0953-8984/21/3/034111.

Dwiputra, D., Hidayat, W., Khairani, R., & Zen, F. P. (2016). Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability. Journal of Physics: Conference Series, 739(1), 012030. doi:10.1088/1742-6596/739/1/012030.

Tuszynski, J. A., & Kurzynski, M. (2003). Introduction to molecular biophysics (1st Ed.). CRC press, Boca Raton, United States. doi:10.1201/9780203009963

Sulaiman, A., Zen, F. P., Alatas, H., & Handoko, L. T. (2012). Dynamics of DNA breathing in the Peyrard-Bishop model with damping and external force. Physica D: Nonlinear Phenomena, 241(19), 1640–1647. doi:10.1016/j.physd.2012.06.011.

Tabi, C. B., Mohamadou, A., & Kofané, T. C. (2008). Formation of localized structures in the Peyrard-Bishop-Dauxois model. Journal of Physics Condensed Matter, 20(41), 415104. doi:10.1088/0953-8984/20/41/415104.

Zoli, M. (2011). Thermodynamics of twisted DNA with solvent interaction. The Journal of chemical physics, 135(11), 09B606. doi:10.1063/1.3631564.

Dwiputra, D., Hidayat, W., & Zen, F. P. (2016). Dynamics of Hydrogen Bonds Coupling on the Specific DNA-Protein Interactions. arXiv preprint arXiv:1607.01608. doi:10.1088/1742-6596/694/1/012076.

Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A., & Litwin, S. (1980). Nature of the open state in long polynucleotide double helices: Possibility of soliton excitations. Proceedings of the National Academy of Sciences of the United States of America, 77(12), 7222–7226. doi:10.1073/pnas.77.12.7222.

Yakushevich, L. V. (1989). Nonlinear DNA dynamics: A new model. Physics Letters A, 136(7–8), 413–417. doi:10.1016/0375-9601(89)90425-8.

Peyrard, M., & Bishop, A. R. (1989). Statistical mechanics of a nonlinear model for DNA denaturation. Physical Review Letters, 62(23), 2755. doi:10.1103/PhysRevLett.62.2755.

Dauxois, T., Peyrard, M., & Bishop, A. R. (1993). Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Physical Review E, 47(1), 684. doi:10.1103/PhysRevE.47.684.

Ribeiro, N. F., & Drigo Filho, E. (2010). Using a one-dimensional lattice applied to the thermodynamic study of DNA. Journal of Physics: Conference Series, 246(1), 012037. doi:10.1088/1742-6596/246/1/012037.

Sulaiman, A., Zen, F. P., Alatas, H., & Handoko, L. T. (2012). The thermal denaturation of the Peyrard–Bishop model with an external potential. Physica Scripta, 86(1), 015802. doi:10.1088/0031-8949/86/01/015802.

Hidayat, W., Sulaiman, A., Viridi, S., & Zen, F. P. (2015). The Viscous and External Forces Effect on the Thermal Denaturation of Peyrard-Bishop Model. Journal of Physical Chemistry & Biophysics, 5(5), 1. doi:10.4172/2161-0398.1000186.

Barbi, M., Lepri, S., Peyrard, M., & Theodorakopoulos, N. (2003). Thermal denaturation of a helicoidal DNA model. Physical Review E, 68(6), 061909. doi:10.1103/PhysRevE.68.061909.

Zdravković, S., & Satarić, M. V. (2005). Optical and acoustical frequencies in a nonlinear helicoidal model of DNA molecules. Chinese Physics Letters, 22(4), 850. doi:10.1088/0256-307X/22/4/020.

Zdravković, S., & Satarić, M. V. (2007). High amplitude mode and DNA opening. EPL (Europhysics Letters), 78(3), 38004. doi:10.1209/0295-5075/78/38004.

Zdravkovic, S., & Sataric, M. V. (2007). Impact of viscosity on DNA dynamics. Chinese Physics Letters, 24(5), 1210. doi:10.1088/0256-307X/24/5/023.

Sulaiman, A., Zen, F. P., Alatas, H., & Handoko, L. T. (2012, June). Dynamics of DNA bubble in viscous medium. In AIP Conference Proceedings, 1454(1), 298-301. American Institute of Physics. doi:10.1063/1.4730745.

Sulaiman, A., Zen, F. P., Alatas, H., & Handoko, L. T. (2010). Anharmonic oscillation effect on the Davydov-Scott monomer in a thermal bath. Physical Review E, 81(6), 061907. doi:10.1103/PhysRevE.81.061907.

Dwiputra, D., Hidayat, W., & Zen, F. P. (2019, April). Low Amplitude Kink Soliton Excitation in Peyrard-Bishop Double Strand DNA Model. Journal of Physics: Conference Series, 1204(1), 012008, IOP Publishing. doi:10.1088/1742-6596/1204/1/012008.

Dwiputra, D., Hidayat, W., & Zen, F. P. (2017, May). Nonlinear dynamics of DNA bubble induced by site specific DNA-protein interaction. Journal of Physics: Conference Series, 856(1), 012005, IOP Publishing. doi:10.1088/1742-6596/856/1/012005.

Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738. doi:10.1038/171737a0.

Peyrard, M. (2004). Nonlinear dynamics and statistical physics of DNA. Nonlinearity, 17(2), R1. doi:10.1088/0951-7715/17/2/R01.

Yakushevich, L. V. (2006). Nonlinear Physics of DNA. John Wiley & Sons, Hoboken, United States. doi:10.1002/3527603700.

Sutantyo, T. E., Ripai, A., Abdullah, Z., & Hidayat, W. (2021, April). Nonlinear dynamics of modified peyrard-bishop DNA model in nosé-hoover thermostat. In Journal of Physics: Conference Series, 1876(1), 012021, IOP Publishing. doi:10.1088/1742-6596/1876/1/012021.

Tuckerman, M. (2010). Statistical mechanics: theory and molecular simulation. Oxford University Press, Oxford, United Kingdom.

Christiansen, P. L., Sorensen, M. P., & Scott, A. C. (2000). Nonlinear Science at the Dawn of the 21st Century. In M. P. Sorensen & A. C. Scott (Eds.), Nonlinear Science at the Dawn of the 21st Century (Vol. 542). Springer Science & Business Media, berlin, Germany. doi:10.1007/3-540-46629-0.

Ripai, A., Abdullah, Z., Syafwan, M., & Hidayat, W. (2021, April). Application of the split-step Fourier method in investigating a bright soliton solution in a photorefractive crystal. AIP Conference Proceedings (Vol. 2331, No. 1, p. 030023). AIP Publishing LLC. doi:10.1063/5.0041878.

Ripai, A., Sutantyo, T. E., Abdullah, Z., Syafwan, M., & Hidayat, W. (2021, April). Effect of ansatz on soliton propagation pattern in photorefractive crystals. Journal of Physics: Conference Series 1876(1), 012009. IOP Publishing. doi:10.1088/1742-6596/1876/1/012009.

Toko, D., & Woulache, R. L. (2013). Breather-Like Solutions of the Twisted DNA with Solvent Interaction. Journal of Physical Chemistry & Biophysics, 03(01), 1000112. doi:10.4172/2161-0398.1000112.

Okaly, J. B., Mvogo, A., Woulaché, R. L., & Kofané, T. C. (2018). Semi-discrete breather in a helicoidal DNA double chain-model. Wave Motion, 82, 1–15. doi:10.1016/j.wavemoti.2018.06.005.

Okaly, J. B., Mvogo, A., Woulaché, R. L., & Kofané, T. C. (2018). Nonlinear dynamics of damped DNA systems with long-range interactions. Communications in Nonlinear Science and Numerical Simulation, 55, 183–193. doi:10.1016/j.cnsns.2017.06.017.

Liu, Z., Wu, C., Wang, J., & Hu, Y. (2019). A Color Image Encryption Using Dynamic DNA and 4-D Memristive Hyper-Chaos. IEEE Access, 7, 78367–78378. doi:10.1109/ACCESS.2019.2922376.

Hu, W., & Deng, Z. (2020). Interaction effects of DNA, RNA-polymerase, and cellular fluid on the local dynamic behaviors of DNA. Applied Mathematics and Mechanics, 41(4), 623-636. doi:10.1007/s10483-020-2595-6.

Yakushevich, L. V., & Krasnobaeva, L. A. (2021). Ideas and methods of nonlinear mathematics and theoretical physics in DNA science: the McLaughlin-Scott equation and its application to study the DNA open state dynamics. Biophysical Reviews, 13(3), 315–338. doi:10.1007/s12551-021-00801-0.

Folifack Signing, V. R., Gakam Tegue, G. A., Kountchou, M., Njitacke, Z. T., Tsafack, N., Nkapkop, J. D. D., Lessouga Etoundi, C. M., & Kengne, J. (2022). A cryptosystem based on a chameleon chaotic system and dynamic DNA coding. Chaos, Solitons & Fractals, 155, 111777. doi:10.1016/j.chaos.2021.111777.

Zoli, M. (2010). Denaturation patterns in heterogeneous DNA. Physical Review E, 81(5), 051910. doi:10.1103/PhysRevE.81.051910.

Behnia, S., Akhshani, A., Panahi, M., Mobaraki, A., & Ghaderian, M. (2011). Multifractal analysis of thermal denaturation based on the Peyrard-Bishop-Dauxois model. Physical Review E, 84(3), 031918. doi:10.1103/PhysRevE.84.031918.

Behnia, S., Akhshani, A., Panahi, M., Mobaraki, A., & Ghaderian, M. (2012). Multifractal properties of denaturation process based on Peyrard–Bishop model. Physics Letters A, 376(37), 2538-2547. doi:10.1016/j.physleta.2012.05.062.

Campa, A., & Giansanti, A. (1998). Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains. Physical Review E, 58(3), 3585. doi:10.1103/PhysRevE.58.3585.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-04-01


  • There are currently no refbacks.

Copyright (c) 2022 Trengginas E P Sutantyo, Ahmad Ripai, Zulfi Abdullah, Wahyu Hidayat, Freddy P Zen