Brightness as an Augmentation Technique for Image Classification

Ibrahem Kandel, Mauro Castelli, Luca Manzoni

Abstract


Augmentation techniques are crucial for accurately training convolution neural networks (CNNs). Therefore, these techniques have become the preprocessing methods. However, not every augmentation technique can be beneficial, especially those that change the image’s underlying structure, such as color augmentation techniques. In this study, the effect of eight brightness scales was investigated in the task of classifying a large histopathology dataset. Four state-of-the-art CNNs were used to assess each scale’s performance. The use of brightness was not beneficial in all the experiments. Among the different brightness scales, the [0.75–1.00] scale, which closely resembles the original brightness of the images, resulted in the best performance. The use of geometric augmentation yielded better performance than any brightness scale. Moreover, the results indicate that training the CNN without applying any augmentation techniques led to better results than considering brightness augmentation. Therefore, experimental results support the hypothesis that brightness augmentation techniques are not beneficial for image classification using deep-learning models and do not yield any performance gain. Furthermore, brightness augmentation techniques can significantly degrade the model’s performance when they are applied with extreme values.

 

Doi: 10.28991/ESJ-2022-06-04-015

Full Text: PDF


Keywords


Image Classification; Deep Learning; Medical Images; Augmentation Techniques; Supervised Learning.

References


Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. doi:10.3322/caac.21660.

Metter, D. M., Colgan, T. J., Leung, S. T., Timmons, C. F., & Park, J. Y. (2019). Trends in the us and canadian pathologistworkforces from 2007 to 2017. JAMA Network Open, 2(5), e194337. doi:10.1001/jamanetworkopen.2019.4337.

Robboy, S. J., Gross, D., Park, J. Y., Kittrie, E., Crawford, J. M., Johnson, R. L., Cohen, M. B., Karcher, D. S., Hoffman, R. D., Smith, A. T., & Black-Schaffer, W. S. (2020). Reevaluation of the US Pathologist Workforce Size. JAMA Network Open, 3(7), e2010648. doi:10.1001/jamanetworkopen.2020.10648.

Bonert, M., Zafar, U., Maung, R., El-Shinnawy, I., Kak, I., Cutz, J. C., Naqvi, A., Juergens, R. A., Finley, C., Salama, S., Major, P., & Kapoor, A. (2021). Evolution of anatomic pathology workload from 2011 to 2019 assessed in a regional hospital laboratory via 574,093 pathology reports. PLoS ONE, 16(6), e253876. doi:10.1371/journal.pone.0253876.

Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., & Van Der Laak, J. (2016). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6(1), 26286. doi:10.1038/srep26286.

Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, A., Gao, R., Jones, E., Yu, Y., Langlotz, C. P., Ball, R. L., Montine, T. J., Martin, B. A., Berry, G. J., Ozawa, M. G., Hazard, F. K., Brown, R. A., Chen, S. B., Wood, M., Allard, L. S., Ylagan, L., Ng, A. Y., Shen, J. (2020). Impact of a deep learning assistant on the histopathologic classification of liver cancer. Npj Digital Medicine, 3(1), 23. doi:10.1038/s41746-020-0232-8.

Steiner, D. F., Macdonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., & Stumpe, M. C. (2018). Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. American Journal of Surgical Pathology, 42(12), 1636–1646. doi:10.1097/PAS.0000000000001151.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), New Yourk, United States, 1097-1105.

Kandel, I., & Castelli, M. (2020). A novel architecture to classify histopathology images using convolutional neural networks. Applied Sciences (Switzerland), 10(8). doi:10.3390/APP10082929.

Van der Laak, J., Litjens, G., & Ciompi, F. (2021). Deep learning in histopathology: the path to the clinic. Nature Medicine, 27(5), 775–784. doi:10.1038/s41591-021-01343-4.

Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2019). Classification of histopathological biopsy images using ensemble of deep learning networks. arXiv preprint arXiv:1909.11870. doi:10.48550/arXiv.1909.11870.

Cheng, J. Y., Abel, J. T., Balis, U. G. J., McClintock, D. S., & Pantanowitz, L. (2021). Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. American Journal of Pathology, 191(10), 1684–1692. doi:10.1016/j.ajpath.2020.10.018.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. doi:10.1186/s40537-019-0197-0.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. 37th International Conference on Machine Learning (ICML 2020), July 12-18 2020, Vienna, Austria, 1575–1585.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G. E. (2020). Big self-supervised models are strong semi-supervised learners. Advances in neural information processing systems, 33, 22243-22255.

Chen, X. (2019). Image enhancement effect on the performance of convolutional neural networks. Department of Computer Science, Faculty of Computing, Blekinge Institute of Technology, Blekinge, Sweden.

Rodríguez-Rodríguez, J. A., Molina-Cabello, M. A., Benítez-Rochel, R., & López-Rubio, E. (2021). The Effect of Noise and Brightness on Convolutional Deep Neural Networks. Lecture Notes in Computer Science, 639–654. doi:10.1007/978-3-030-68780-9_49.

Taylor, L., & Nitschke, G. (2018). Improving Deep Learning with Generic Data Augmentation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). doi:10.1109/ssci.2018.8628742.

Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep neural networks. 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX). doi:10.1109/qomex.2016.7498955.

Nazaré, T. S., da Costa, G. B. P., Contato, W. A., & Ponti, M. (2018). Deep Convolutional Neural Networks and Noisy Images. Lecture Notes in Computer Science, 416–424. doi:10.1007/978-3-319-75193-1_50.

Haque, M. A., Marwaha, S., Deb, C. K., Nigam, S., Arora, A., Hooda, K. S., Soujanya, P. L., Aggarwal, S. K., Lall, B., Kumar, M., Islam, S., Panwar, M., Kumar, P., & Agrawal, R. C. (2022). Deep learning-based approach for identification of diseases of maize crop. Scientific Reports, 12(1), 6334. doi:10.1038/s41598-022-10140-z.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. doi:10.1007/BF00344251.

LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, contour and grouping in computer vision, 319-345. Springer, Berlin, Heidelberg. doi:10.1007/3-540-46805-6_19.

Widiputra, H. (2021). GA-Optimized Multivariate CNN-LSTM Model for Predicting Multi-Channel Mobility in the COVID-19 Pandemic. Emerging Science Journal, 5(5), 619-635. doi: 10.28991/esj-2021-01300.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298594.

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. doi:10.1109/CVPR.2016.90.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243.

Zhang, C., Benz, P., Argaw, D. M., Lee, S., Kim, J., Rameau, F., Bazin, J. C., & Kweon, I. S. (2021). ResNet or DenseNet? Introducing Dense Shortcuts to ResNet. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv48630.2021.00359.

Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7(1), 29. doi:10.4103/2153-3539.186902.

Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., & Madabhushi, A. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Medical Imaging 2014: Digital Pathology. doi:10.1117/12.2043872.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. doi:10.1177/001316446002000104.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi:10.48550/arXiv.1412.6980.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2010). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. doi:10.1109/cvpr.2009.5206848.

GitHub (2015). Keras-team/keras: GitHub Inc. 2015. Available online: https://github.com/fchollet/keras (accessed on January 2022).

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. doi:10.48550/arXiv.1603.04467.

Vingelmann, P. and Fitzek, F. H. P. (2020). NVIDIA: CUDA, Release: 10.2.89. 2020. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on January 2022).

Choi, J. Y., Yoo, T. K., Seo, J. G., Kwak, J., Um, T. T., & Rim, T. H. (2017). Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PLoS ONE, 12(11), e187336. doi:10.1371/journal.pone.0187336.

Hermsen, M., de Bel, T., den Boer, M., Steenbergen, E. J., Kers, J., Florquin, S., … van der Laak, J. A. W. M. (2019). Deep Learning–Based Histopathologic Assessment of Kidney Tissue. Journal of the American Society of Nephrology, 30(10), 1968–1979. doi:10.1681/asn.2019020144.

Kitamura, G., Chung, C. Y., & Moore, B. E. (2019). Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. Journal of Digital Imaging, 32(4), 672–677. doi:10.1007/s10278-018-0167-7.

Berral-Soler, R., Madrid-Cuevas, F. J., Muñoz-Salinas, R., & Marín-Jiménez, M. J. (2021). RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild. Neural Computing and Applications, 33(13), 7673–7689. doi:10.1007/s00521-020-05511-4.

Perez, F., Vasconcelos, C., Avila, S., & Valle, E. (2018). Data Augmentation for Skin Lesion Analysis. OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, 303–311, Springer, Cham, Switzerland. doi:10.1007/978-3-030-01201-4_33.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-04-015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ibrahem Kandel