Brightness as an Augmentation Technique for Image Classification
Abstract
Doi: 10.28991/ESJ-2022-06-04-015
Full Text: PDF
Keywords
References
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. doi:10.3322/caac.21660.
Metter, D. M., Colgan, T. J., Leung, S. T., Timmons, C. F., & Park, J. Y. (2019). Trends in the us and canadian pathologistworkforces from 2007 to 2017. JAMA Network Open, 2(5), e194337. doi:10.1001/jamanetworkopen.2019.4337.
Robboy, S. J., Gross, D., Park, J. Y., Kittrie, E., Crawford, J. M., Johnson, R. L., Cohen, M. B., Karcher, D. S., Hoffman, R. D., Smith, A. T., & Black-Schaffer, W. S. (2020). Reevaluation of the US Pathologist Workforce Size. JAMA Network Open, 3(7), e2010648. doi:10.1001/jamanetworkopen.2020.10648.
Bonert, M., Zafar, U., Maung, R., El-Shinnawy, I., Kak, I., Cutz, J. C., Naqvi, A., Juergens, R. A., Finley, C., Salama, S., Major, P., & Kapoor, A. (2021). Evolution of anatomic pathology workload from 2011 to 2019 assessed in a regional hospital laboratory via 574,093 pathology reports. PLoS ONE, 16(6), e253876. doi:10.1371/journal.pone.0253876.
Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., & Van Der Laak, J. (2016). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6(1), 26286. doi:10.1038/srep26286.
Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, A., Gao, R., Jones, E., Yu, Y., Langlotz, C. P., Ball, R. L., Montine, T. J., Martin, B. A., Berry, G. J., Ozawa, M. G., Hazard, F. K., Brown, R. A., Chen, S. B., Wood, M., Allard, L. S., Ylagan, L., Ng, A. Y., Shen, J. (2020). Impact of a deep learning assistant on the histopathologic classification of liver cancer. Npj Digital Medicine, 3(1), 23. doi:10.1038/s41746-020-0232-8.
Steiner, D. F., Macdonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., & Stumpe, M. C. (2018). Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. American Journal of Surgical Pathology, 42(12), 1636–1646. doi:10.1097/PAS.0000000000001151.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), New Yourk, United States, 1097-1105.
Kandel, I., & Castelli, M. (2020). A novel architecture to classify histopathology images using convolutional neural networks. Applied Sciences (Switzerland), 10(8). doi:10.3390/APP10082929.
Van der Laak, J., Litjens, G., & Ciompi, F. (2021). Deep learning in histopathology: the path to the clinic. Nature Medicine, 27(5), 775–784. doi:10.1038/s41591-021-01343-4.
Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2019). Classification of histopathological biopsy images using ensemble of deep learning networks. arXiv preprint arXiv:1909.11870. doi:10.48550/arXiv.1909.11870.
Cheng, J. Y., Abel, J. T., Balis, U. G. J., McClintock, D. S., & Pantanowitz, L. (2021). Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. American Journal of Pathology, 191(10), 1684–1692. doi:10.1016/j.ajpath.2020.10.018.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. doi:10.1186/s40537-019-0197-0.
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. 37th International Conference on Machine Learning (ICML 2020), July 12-18 2020, Vienna, Austria, 1575–1585.
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G. E. (2020). Big self-supervised models are strong semi-supervised learners. Advances in neural information processing systems, 33, 22243-22255.
Chen, X. (2019). Image enhancement effect on the performance of convolutional neural networks. Department of Computer Science, Faculty of Computing, Blekinge Institute of Technology, Blekinge, Sweden.
Rodríguez-Rodríguez, J. A., Molina-Cabello, M. A., Benítez-Rochel, R., & López-Rubio, E. (2021). The Effect of Noise and Brightness on Convolutional Deep Neural Networks. Lecture Notes in Computer Science, 639–654. doi:10.1007/978-3-030-68780-9_49.
Taylor, L., & Nitschke, G. (2018). Improving Deep Learning with Generic Data Augmentation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). doi:10.1109/ssci.2018.8628742.
Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep neural networks. 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX). doi:10.1109/qomex.2016.7498955.
Nazaré, T. S., da Costa, G. B. P., Contato, W. A., & Ponti, M. (2018). Deep Convolutional Neural Networks and Noisy Images. Lecture Notes in Computer Science, 416–424. doi:10.1007/978-3-319-75193-1_50.
Haque, M. A., Marwaha, S., Deb, C. K., Nigam, S., Arora, A., Hooda, K. S., Soujanya, P. L., Aggarwal, S. K., Lall, B., Kumar, M., Islam, S., Panwar, M., Kumar, P., & Agrawal, R. C. (2022). Deep learning-based approach for identification of diseases of maize crop. Scientific Reports, 12(1), 6334. doi:10.1038/s41598-022-10140-z.
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. doi:10.1007/BF00344251.
LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, contour and grouping in computer vision, 319-345. Springer, Berlin, Heidelberg. doi:10.1007/3-540-46805-6_19.
Widiputra, H. (2021). GA-Optimized Multivariate CNN-LSTM Model for Predicting Multi-Channel Mobility in the COVID-19 Pandemic. Emerging Science Journal, 5(5), 619-635. doi: 10.28991/esj-2021-01300.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298594.
Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. doi:10.1109/CVPR.2016.90.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243.
Zhang, C., Benz, P., Argaw, D. M., Lee, S., Kim, J., Rameau, F., Bazin, J. C., & Kweon, I. S. (2021). ResNet or DenseNet? Introducing Dense Shortcuts to ResNet. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv48630.2021.00359.
Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7(1), 29. doi:10.4103/2153-3539.186902.
Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., & Madabhushi, A. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Medical Imaging 2014: Digital Pathology. doi:10.1117/12.2043872.
Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. doi:10.1177/001316446002000104.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi:10.48550/arXiv.1412.6980.
Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2010). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. doi:10.1109/cvpr.2009.5206848.
GitHub (2015). Keras-team/keras: GitHub Inc. 2015. Available online: https://github.com/fchollet/keras (accessed on January 2022).
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. doi:10.48550/arXiv.1603.04467.
Vingelmann, P. and Fitzek, F. H. P. (2020). NVIDIA: CUDA, Release: 10.2.89. 2020. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on January 2022).
Choi, J. Y., Yoo, T. K., Seo, J. G., Kwak, J., Um, T. T., & Rim, T. H. (2017). Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PLoS ONE, 12(11), e187336. doi:10.1371/journal.pone.0187336.
Hermsen, M., de Bel, T., den Boer, M., Steenbergen, E. J., Kers, J., Florquin, S., … van der Laak, J. A. W. M. (2019). Deep Learning–Based Histopathologic Assessment of Kidney Tissue. Journal of the American Society of Nephrology, 30(10), 1968–1979. doi:10.1681/asn.2019020144.
Kitamura, G., Chung, C. Y., & Moore, B. E. (2019). Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. Journal of Digital Imaging, 32(4), 672–677. doi:10.1007/s10278-018-0167-7.
Berral-Soler, R., Madrid-Cuevas, F. J., Muñoz-Salinas, R., & Marín-Jiménez, M. J. (2021). RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild. Neural Computing and Applications, 33(13), 7673–7689. doi:10.1007/s00521-020-05511-4.
Perez, F., Vasconcelos, C., Avila, S., & Valle, E. (2018). Data Augmentation for Skin Lesion Analysis. OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, 303–311, Springer, Cham, Switzerland. doi:10.1007/978-3-030-01201-4_33.
DOI: 10.28991/ESJ-2022-06-04-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ibrahem Kandel