SleepCon: Sleeping Posture Recognition Model using Convolutional Neural Network
Downloads
Doi: 10.28991/ESJ-2023-07-01-04
Full Text: PDF
Downloads
Scholkmann, F., Boss, J., & Wolf, M. (2012). An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms, 5(4), 588–603. doi:10.3390/a5040588.
Lee, W. H., & Ko, M. S. (2017). Effect of sleep posture on neck muscle activity. Journal of Physical Therapy Science, 29(6), 1021–1024. doi:10.1589/jpts.29.1021.
Gordon, S., Grimmer, K., & Trott, P. (2007). Sleep Position, Age, Gender, Sleep Quality and Waking Cervico-Thoracic Symptoms. Internet Journal of Allied Health Sciences and Practice, 5(1). doi:10.46743/1540-580x/2007.1134.
Nojiri, A., Okumura, C., & Ito, Y. (2014). Sleep Posture Affects Sleep Parameters Differently in Young and Senior Japanese as Assessed by Actigraphy. Health, 06(21), 2934–2944. doi:10.4236/health.2014.621332.
Ramar, K., Malhotra, R. K., Carden, K. A., Martin, J. L., Abbasi-Feinberg, F., Aurora, R. N., Kapur, V. K., Olson, E. J., Rosen, C. L., Rowley, J. A., Shelgikar, A. V., & Trotti, L. M. (2021). Sleep is essential to health: An American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 17(10), 2115–2119. doi:10.5664/jcsm.9476.
Ong, H. S., Lim, C. S., Constance Png, A. L., Kong, J. W., & Peh, A. L. H. (2021). Chronobiology and the case for sleep health interventions in the community. Singapore Medical Journal, 62(5), 220–224. doi:10.11622/smedj.2021058.
Pham, T., Lin, C. K., Leek, D., Chandrashekhar, R., & Annaswamy, T. M. (2020). Obstructive sleep Apnea's association with the cervical spine abnormalities, posture, and pain: a systematic review. Sleep Medicine, 75, 468–476. doi:10.1016/j.sleep.2020.09.008.
Estivalet, K. M., Thomas, C., Ponte, A. S., Pinto, D. da S. P., & Delboni, M. C. C. (2020). Interference of the Carpal Tunnel syndrome symptoms on occupational performance. Brazilian Journal of Pain, 3(3), 234–238. doi:10.5935/2595-0118.20200052.
Bernal Monroy, E., Polo Rodríguez, A., Espinilla Estevez, M., & Medina Quero, J. (2020). Fuzzy monitoring of in-bed postural changes for the prevention of pressure ulcers using inertial sensors attached to clothing. Journal of Biomedical Informatics, 107, 103476. doi:10.1016/j.jbi.2020.103476.
Wu, L., Shi, P. L., Tao, S. S., Tao, J. H., & Wu, G. C. (2021). Decreased sleep quality in patients with systemic lupus erythematosus: a meta-analysis. Clinical Rheumatology, 40(3), 913–922. doi:10.1007/s10067-020-05300-3.
Lin, F., Zhuang, Y., Song, C., Wang, A., Li, Y., Gu, C., Li, C., & Xu, W. (2017). SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 189–202. doi:10.1109/TBCAS.2016.2541680.
Liu, J. H., Ma, Q.H., Sun, H. P., Xu, Y., & Pan, C. W. (2021). Depressive symptom as a mediator of the influence of self-reported sleep quality on falls: a mediation analysis. Aging & Mental Health, 25(4), 728–733. doi:10.1080/13607863.2020.1711860.
Davoodnia, V., & Etemad, A. (2019). Identity and Posture Recognition in Smart Beds with Deep Multitask Learning. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). doi:10.1109/smc.2019.8914459.
Tang, K., Kumar, A., Nadeem, M., & Maaz, I. (2021). CNN-Based Smart Sleep Posture Recognition System. IoT, 2(1), 119–139. doi:10.3390/iot2010007.
Liu, J., Chen, X., Chen, S., Liu, X., Wang, Y., & Chen, L. (2019). TagSheet: Sleeping Posture Recognition with an Unobtrusive Passive Tag Matrix. IEEE INFOCOM Conference on Computer Communications. doi:10.1109/infocom.2019.8737599.
Grimm, T., Martinez, M., Benz, A., & Stiefelhagen, R. (2016). Sleep position classification from a depth camera using Bed Aligned Maps. 2016 23rd International Conference on Pattern Recognition (ICPR). doi:10.1109/icpr.2016.7899653.
Martinez, M., Schauerte, B., Stiefelhagen, R. (2013). "BAM!” Depth-Based Body Analysis in Critical Care. Computer Analysis of Images and Patterns. CAIP 2013, Lecture Notes in Computer Science, 8047, Springer, Berlin, Germany. doi:10.1007/978-3-642-40261-6_56.
Huang, Y. F., Hsu, Y. H., Chang, C. C., Liu, S. H., Wei, C. C., Yao, T. Y., & Lin, C. B. (2017). An Improved Sleep Posture Recognition Based on Force Sensing Resistors. Intelligent Information and Database Systems. ACIIDS 2017, Lecture Notes in Computer Science, 10192. Springer, Cham, Switzerland. doi:10.1007/978-3-319-54430-4_31.
Liu, Z., Wang, X., SU, M., & Lu, K. (2019). A Method to Recognize Sleeping Position Using an CNN Model Based on Human Body Pressure Image. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). doi:10.1109/icpics47731.2019.8942566.
Hu, Q., Tang, X., & Tang, W. (2021). A Real-Time Patient-Specific Sleeping Posture Recognition System Using Pressure Sensitive Conductive Sheet and Transfer Learning. IEEE Sensors Journal, 21(5), 6869–6879. doi:10.1109/JSEN.2020.3043416.
Matar, G., Lina, J. M., & Kaddoum, G. (2020). Artificial Neural Network for in-Bed Posture Classification Using Bed-Sheet Pressure Sensors. IEEE Journal of Biomedical and Health Informatics, 24(1), 101–110. doi:10.1109/JBHI.2019.2899070.
Matar, G., Lina, J.-M., Carrier, J., Riley, A., & Kaddoum, G. (2016). Internet of Things in sleep monitoring: An application for posture recognition using supervised learning. 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services (Healthcom). doi:10.1109/healthcom.2016.7749469.
Pouyan, M. B., Birjandtalab, J., Heydarzadeh, M., Nourani, M., & Ostadabbas, S. (2017). A pressure map dataset for posture and subject analytics. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). doi:10.1109/bhi.2017.7897206.
Mohammadi, S. M., Enshaeifar, S., Hilton, A., Dijk, D. J., & Wells, K. (2021). Transfer Learning for Clinical Sleep Pose Detection Using a Single 2D IR Camera. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 290–299. doi:10.1109/TNSRE.2020.3048121.
Byeon, Y. H., Lee, J. Y., Kim, D. H., & Kwak, K. C. (2020). Posture recognition using ensemble deep models under various home environments. Applied Sciences (Switzerland), 10(4). doi:10.3390/app10041287.
Enokibori, Y., & Mase, K. (2018). Data augmentation to build high performance DNN for in-bed posture classification. Journal of Information Processing, 26, 718–727. doi:10.2197/ipsjjip.26.718.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
