Leveraging Hybrid Deep Q-Learning for Early Identification of At-Risk Students
Downloads
Student performance prediction is employed to predict the learning performance to identify at-risk students. However, prediction models should also consider external factors along with learning activities, such as course duration. The student’s performance gets affected, which leads to a high decreasing rate and meets the risk of failing to complete the course on time. To overcome these challenges, this work proposed a Sea Lion Search Optimization (SLnSO) based on the Deep Q network (DQN) for predicting at-risk students. Here, the input data is taken from the dataset and forwarded to the data transformation phase, which is performed by Yeo-Johnson (YJ) transformation. Then, in the feature selection stage, the most relevant features are selected using the Damerau-Levenshtein technique. Then, Data Augmentation (DA) is performed to increase the dimension of the features, which is followed by the Deep Q Network (DQN) that is utilized for predicting the students at risk. Finally, by implementing the proposed SLnSO, the predicted results will be executed by DQN. The SLnSO-DQN is the combination of both Sea Lion Optimization (SLnO) and Squirrel Search Algorithm (SSA). The outcomes of the proposed model SLnSO-DQN attain significant performance that is based on various parameters, such as Mean Absolute Error (MAE), Mean Square Error (MSE), and Root MSE (RMSE), and also obtained better values of 0.327, 0.265, and 0.514, respectively.
Downloads
[1] Kaur, G., & Singh, W. (2016). Prediction of student performance using weka tool. An International Journal of Engineering Sciences, 17, 8-16.
[2] He, Y., Chen, R., Li, X., Hao, C., Liu, S., Zhang, G., & Jiang, B. (2020). Online at-risk student identification using RNN-GRU joint neural networks. Information (Switzerland), 11(10), 1–11. doi:10.3390/info11100474.
[3] Mahajan, G., & Saini, B. (2020). Educational Data Mining: A state-of-the-art survey on tools and techniques used in EDM. International Journal of Computer Applications & Information Technology, 12(1), 310-316.
[4] Dien, T. T., Luu, S. H., Thanh-Hai, N., & Thai-Nghe, N. (2020). Deep learning with data transformation and factor analysis for student performance prediction. International Journal of Advanced Computer Science and Applications, 11(8), 711–721. doi:10.14569/IJACSA.2020.0110886.
[5] Chen, Y., & Zhai, L. (2023). A comparative study on student performance prediction using machine learning. Education and Information Technologies, 28(9), 12039–12057. doi:10.1007/s10639-023-11672-1.
[6] Su, Y., Liu, Q., Liu, Q., Huang, Z., Yin, Y., Chen, E., Ding, C., Wei, S., & Hu, G. (2018). Exercise-enhanced sequential modeling for student performance prediction. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 32(1), 2435–2443. doi:10.1609/aaai.v32i1.11864.
[7] Alshammari, A. (2024). Using analytics to predict students’ interactions with learning management systems in online courses. Education and Information Technologies, 29(15), 20587–20612. doi:10.1007/s10639-024-12709-9.
[8] Thai-Nghe, N., Horváth, T., & Schmidt-Thieme, L. (2011). Factorization Models for Forecasting Student Performance. 4th international conference on educational data mining, 6-8 July, 2011, Eindhoven, Netherlands.
[9] Liu, D., Zhang, Y., Zhang, J., Li, Q., Zhang, C., & Yin, Y. (2020). Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction. IEEE Access, 8, 194894–194903. doi:10.1109/ACCESS.2020.3033200.
[10] Mat, U. B., Buniyamin, N., Arsad, P. M., & Kassim, R. (2013). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th Conference on Engineering Education (ICEED), 126–130. doi:10.1109/iceed.2013.6908316.
[11] Rastrollo-Guerrero, J. L., Gómez-Pulido, J. A., & Durán-Domínguez, A. (2020). Analyzing and predicting students’ performance by means of machine learning: A review. Applied Sciences (Switzerland), 10(3), 1042. doi:10.3390/app10031042.
[12] Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. doi:10.1016/j.procs.2015.12.157.
[13] Chicon, P. M. M., Paschoal, L. N., Sawicki, S., Roos-Frantz, F., & Frantz, R. Z. (2025). A Predictive Model for the Early Identification of Student Dropout Using Data Classification, Clustering, and Association Methods. Revista Iberoamericana de Tecnologias Del Aprendizaje, 20, 12–21. doi:10.1109/RITA.2025.3528369.
[14] Kemper, L., Vorhoff, G., & Wigger, B. U. (2020). Predicting student dropout: A machine learning approach. European Journal of Higher Education, 10(1), 28–47. doi:10.1080/21568235.2020.1718520.
[15] Kim, B. H., Vizitei, E., & Ganapathi, V. (2018). GritNet: Student performance prediction with deep learning. arXiv (Preprint), arXiv.1804.07405. doi:10.48550/arXiv.1804.07405.
[16] Dixit, P., Nagar, H., & Dixit, S. (2022). Student performance prediction using case based reasoning knowledge base system (CBR-KBS) based data mining. International Journal of Information and Education Technology, 12(1), 30–35. doi:10.18178/ijiet.2022.12.1.1583.
[17] Alsariera, Y. A., Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A. A., & Ali, N. (2022). Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance. Computational Intelligence and Neuroscience, 2022, 1–11. doi:10.1155/2022/4151487.
[18] Kumar Veerasamy, A., D’Souza, D., Apiola, M.-V., Laakso, M.-J., & Salakoski, T. (2020). Using early assessment performance as early warning signs to identify at-risk students in programming courses. 2020 IEEE Frontiers in Education Conference (FIE), 1–9. doi:10.1109/fie44824.2020.9274277.
[19] Zerkouk, M., Mihoubi, M., Chikhaoui, B., & Wang, S. (2024). A machine learning based model for student’s dropout prediction in online training. Education and Information Technologies, 29(12), 15793–15812. doi:10.1007/s10639-024-12500-w.
[20] Albreiki, B., Habuza, T., Palakkal, N., & Zaki, N. (2024). Clustering-based knowledge graphs and entity-relation representation improves the detection of at risk students. Education and Information Technologies, 29(6), 6791–6820. doi:10.1007/s10639-023-11938-8.
[21] Pei, B., & Xing, W. (2022). An Interpretable Pipeline for Identifying At-Risk Students. Journal of Educational Computing Research, 60(2), 380–405. doi:10.1177/07356331211038168.
[22] Wang, X., Guo, B., & Shen, Y. (2022). Predicting the At-Risk Online Students Based on the Click Data Distribution Characteristics. Scientific Programming, 2022, 1–12. doi:10.1155/2022/9938260.
[23] Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1–19. doi:10.1186/s40561-022-00192-z.
[24] Parhizkar, A., Tejeddin, G., & Khatibi, T. (2023). Student performance prediction using datamining classification algorithms: Evaluating generalizability of models from geographical aspect. Education and Information Technologies, 28(11), 14167–14185. doi:10.1007/s10639-022-11560-0.
[25] Susheelamma, K. H., & Ravikumar, K. M. (2019). Student risk identification learning model using machine learning approach. International Journal of Electrical and Computer Engineering, 9(5), 3872–3879. doi:10.11591/ijece.v9i5.pp3872-3879.
[26] Yang, Z., Yang, J., Rice, K., Hung, J. L., & Du, X. (2020). Using Convolutional Neural Network to Recognize Learning Images for Early Warning of At-Risk Students. IEEE Transactions on Learning Technologies, 13(3), 617–630. doi:10.1109/TLT.2020.2988253.
[27] Azcona, D., Hsiao, I. H., & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Modeling and User-Adapted Interaction, 29(4), 759–788. doi:10.1007/s11257-019-09234-7.
[28] Son, L. H., & Fujita, H. (2019). Neural-fuzzy with representative sets for prediction of student performance. Applied Intelligence, 49(1), 172–187. doi:10.1007/s10489-018-1262-7.
[29] Kustitskaya, T. A., Kytmanov, A. A., & Noskov, M. V. (2020). Student-at-risk detection by current learning performance indicators using Bayesian networks. arXiv (Preprint), arXiv.2004.09774. doi:10.48550/arXiv.2004.09774.
[30] Leelaluk, S., Tang, C., Minematsu, T., Taniguchi, Y., Okubo, F., Yamashita, T., & Shimada, A. (2024). Attention-Based Artificial Neural Network for Student Performance Prediction Based on Learning Activities. IEEE Access, 12, 100659–100675. doi:10.1109/access.2024.3429554.
[31] Mehdi, R., & Nachouki, M. (2023). A neuro-fuzzy model for predicting and analyzing student graduation performance in computing programs. Education and Information Technologies, 28(3), 2455–2484. doi:10.1007/s10639-022-11205-2.
[32] Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20(1), 4. doi:10.1186/s41239-022-00372-4.
[33] Kusumawardani, S. S., & Alfarozi, S. A. I. (2023). Transformer Encoder Model for Sequential Prediction of Student Performance Based on Their Log Activities. IEEE Access, 11, 18960–18971. doi:10.1109/ACCESS.2023.3246122.
[34] Noviandy, T. R., Zahriah, Z., Yandri, E., Jalil, Z., Yusuf, M., Mohamed Yusof, N. I. S., Lala, A., & Idroes, R. (2024). Machine Learning for Early Detection of Dropout Risks and Academic Excellence: A Stacked Classifier Approach. Journal of Educational Management and Learning, 2(1), 28–34. doi:10.60084/jeml.v2i1.191.
[35] Awedh, M. H., & Mueen, A. (2025). Early Identification of Vulnerable Students with Machine Learning Algorithms. WSEAS Transactions on Information Science and Applications, 22, 166–188. doi:10.37394/23209.2025.22.16.
[36] Othman, S. A., & Ali, H. T. M. (2021). Improvement of the Nonparametric Estimation of Functional Stationary Time Series Using Yeo-Johnson Transformation with Application to Temperature Curves. Advances in Mathematical Physics, 2021, 1–6. doi:10.1155/2021/6676400.
[37] Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148–175. doi:10.1016/j.swevo.2018.02.013.
[38] Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization algorithm. International Journal of Advanced Computer Science and Applications, 10(5), 388–395. doi:10.14569/ijacsa.2019.0100548.
[39] Sasaki, H., Horiuchi, T., & Kato, S. (2017). A study on vision-based mobile robot learning by deep Q-network. 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2017, 2017-November, 799–804. doi:10.23919/SICE.2017.8105597.
[40] UCI Machine Learning Repository (2025). Student performance dataset. UCI Machine Learning Repository, Noida, India. Available online: https://archive.ics.uci.edu/ml/datasets/student+performance# (accessed on July 2025).
[41] Zhao, C., & Sahni, S. (2019). String correction using the Damerau-Levenshtein distance. BMC Bioinformatics, 20(S11), 277. doi:10.1186/s12859-019-2819-0.
[42] Efron, B., & Tibshirani, R. J. (1993). Introduction. An Introduction to the Bootstrap, 1–9, Chapman and Hall/CRC, New York, United States. doi:10.1007/978-1-4899-4541-9_1.
[43] Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, 9, 140731–140746. doi:10.1109/ACCESS.2021.3119596.
[44] Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers and Structures, 110–111, 151–166. doi:10.1016/j.compstruc.2012.07.010.
[45] Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20–34. doi:10.1016/j.engappai.2019.01.001.
[46] Venkata Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19–34. doi:10.5267/j.ijiec.2015.8.004.
[47] Mirjalili, S. (2019). Genetic Algorithm. Evolutionary Algorithms and Neural Networks. Studies in Computational Intelligence, vol 780. Springer, Cham, Switzerland. doi:10.1007/978-3-319-93025-1_4.
[48] Zhu, H., Wang, Y., Wang, K., & Chen, Y. (2011). Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem. Expert Systems with Applications, 38(8), 10161–10169. doi:10.1016/j.eswa.2011.02.075.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
